检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学外国语学院,辽宁 大连
出 处:《现代语言学》2024年第10期819-826,共8页Modern Linguistics
摘 要:本文基于语篇衔接理论,通过构建平行语料库,对人民网日文版“中国語教室”板块中的新闻文本进行量化统计和质性分析,比较机器译文与人工译文在照应衔接手段上的异同,并提出相应的译后编辑策略。研究发现机器译文在人称照应上存在冗余现象,指示照应上不同翻译系统展现出个性化特征,而在比较照应上两者差异不大。基于此,本文建议译者在译后编辑时,应针对不同翻译系统的常见问题,采用多样化的衔接手段,提升译文的衔接性和连贯性,以提高机器译文质量。This paper, based on discourse cohesion theory, constructs a parallel corpus to conduct both quantitative statistics and qualitative analysis on news texts from the “中国語教室” section of the Japanese version of People’s Daily Online. It compares the similarities and differences between machine translations and human translations in terms of referential cohesion strategies and proposes corresponding post-editing strategies. The findings indicate that machine translations tend to exhibit redundancy in personal reference, while different translation systems display distinct patterns in demonstrative reference. However, the two types of translations show minimal differences in comparative reference. Accordingly, this paper recommends that translators adopt diverse cohesion strategies during post-editing, tailored to the specific issues associated with each translation system, to enhance the overall cohesion and coherence of the translated texts.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.156.0