检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中央财经大学管理科学与工程学院,北京 [2]北京师范大学政府管理学院,北京
出 处:《现代管理》2024年第4期566-573,共8页Modern Management
摘 要:财务欺诈对经济市场的稳定性和信任体系造成了重大威胁,准确识别和检测财务欺诈异常变得至关重要。本文综述了企业财务欺诈异常检测的最新进展。首先介绍了传统的财务欺诈检测方法,重点讨论了基于机器学习和数据挖掘技术的财务欺诈检测方法。这些方法利用丰富的财务数据和模式识别算法,可以自动发现潜在的欺诈行为。接着介绍了出现的新方法:将财务报表、媒体新闻、企业公告等文本数据纳入检测范围。新方法通过提取更多的特征信息、融合多种数据源的方式,提高了财务欺诈检测的准确性和效率。Financial fraud poses a major threat to the stability and trust system of the economic market, so it is very important to accurately identify and detect financial fraud anomalies. This paper reviews the latest progress in anomaly detection of financial fraud in enterprises. Firstly, the traditional financial fraud detection methods are introduced, and the financial fraud detection methods based on machine learning and data mining technology are mainly discussed. These methods use rich financial data and pattern recognition algorithms to automatically spot potential fraud. Then, a new method is introduced: text data such as financial statements, media news and corporate announcements are included in the scope of detection. The new method improves the accuracy and efficiency of financial fraud detection by extracting more characteristic information and integrating multiple data sources.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38