检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学机械工程学院,上海
出 处:《建模与仿真》2023年第2期1428-1440,共13页Modeling and Simulation
摘 要:首先通过Lagrange法构建机器人的动力学模型,经过线性变换和动力学参数重组,获取最小惯性参数集。其次,选择傅里叶级数作为激励轨迹,结合MATLAB优化工具箱对傅里叶级数系数进行优化,从而获得最佳的激励轨迹。最后将最优的激励轨迹导入到ADAMS中进行仿真,得出相关数据,并根据最小二乘法计算出待辨识动力学参数估计值,并与理论值进行对比,计算绝对误差。结果表明:仿真实验能够获得较为理想的效果,验证参数辨识方法的正确性。First of all, the dynamic model of the robot is built according to the Lagrange method, and the min-imum set of unbiased parameters is obtained after linear transformation and dynamic recombina-tion of parameters. Secondly, the Fourier series is chosen as the exciting trajectory, and the Fourier series coefficient is optimized in conjunction with the MATLAB optimization tools to achieve the best exciting trajectory. Finally, the best gripping trajectory is imported into ADAMS for modeling, the relevant data is obtained, and the calculated value of the known kinetic parameter is calculated by the method of least squared, and the total error is calculated by comparison with the theoretical value. The results show that by correcting the parameter identification method and verifying the parameter identification method, a more ideal effect can be achieved.
关 键 词:机器人动力学 MATLAB优化工具箱 Lagrange法 惯性参数 激励轨迹 傅里叶级数 最小二乘法 线性变换
分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69