检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学机械工程学院,上海 [2]新加坡国立大学设计与工程学院,新加坡
出 处:《建模与仿真》2024年第2期1247-1264,共18页Modeling and Simulation
摘 要:针对由于传统PID串级控制结构的局限性以及欠训练神经网络前馈控制器输出的控制量的不确定性导致的直流伺服电机位置跃变控制动态性能欠佳的问题,提出了一种基于模糊推理决策神经网络前馈补偿值的控制方法。该方法包括三个控制子模块:基础控制模块、神经网络控制模块、以及模糊决策模块。基础控制模块为传统PID控制,保证控制初期整个系统的稳定以及为神经网络控制模块提供在线学习样本;神经网络控制模块通过在线学习被控对象的动态逆模型后对PID控制器进行前馈补偿;模糊决策模块根据电机位置的实时跟踪情况输出决策因子,用于自适应决策神经网络控制模块在欠训练时的前馈输出量,提升直流伺服电机位置跃变控制时的动态品质。仿真和实验结果表明:提出的方法在不牺牲稳态精度条件下,显著提升直流伺服电机位置控制的快速跟随性能,减少了控制系统的超调量和调节时间,具有较好的动静特性和较强的鲁棒性。To overcome the poor dynamic performance of DC servo motor position leap control caused by the limitations of the conventional PID cascade control structure and the uncertainty control effect by the under-trained neural network feedforward controller, a control method based on fuzzy infer-ence decides neural network feedforward compensation control quantity is proposed. The method consists of three control submodules: basic control module, neural network control module and fuzzy decision module. The basic control module is conventional PID control, which ensures the sta-bility of the system at the initially stage of control and provides online learning samples for the neural network control module. The neural network control module performs feedforward com-pensation on the PID controller through learning the dynamic inverse model of the controlled ob-ject online. The fuzzy decision-making module outputs decision factor according to the real- time tracking situation of the motor position, which is used to adaptively decide the feedforward control quantity of the neural network control module when it is under-trained, and to improve the dy-namic quality of the position leap control of the DC servo motor. Simulation and experimental re-sults show that the proposed method significantly improves the fast-following performance of DC servo motor position control without sacrificing the steady-state accuracy, reduces the overshoot and settling time, has great dynamic and steady-state performance and strong robustness.
关 键 词:模糊推理 神经网络 前馈控制 直流伺服电机 动态性能
分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.82.191