基于经典电磁理论分子简化模型的分子力与分子势能函数研究  

Research on Molecular Force and Molecular Potential Energy Function Based on the Simplified Model of Classical Electromagnetic Theory

在线阅读下载全文

作  者:黄绍书 岳国联 

机构地区:[1]安顺学院数理学院,贵州 安顺 [2]六盘水市第23中学,贵州 六盘水 [3]六盘水市教育科学研究院,贵州 六盘水

出  处:《现代物理》2023年第3期51-61,共11页Modern Physics

摘  要:分子力的本质是通过分子势场的电磁相互作用,其作用规律很复杂。由于分子力的复杂性,使得分子势能函数更为复杂。本文基于经典电磁理论,通过构建单原子非极性分子简化模型,把孤立分子简化成单原子球状模型的非极性分子,并将核外电子绕核运动的复杂电子云简化成相对稳定的圆形轨道。根据库仑定律、安培定律和分子极化现象对分子间相互作用力的变化规律进行研究,给出分子力函数表达式。并构建分子极化距离约束函数,给出氦分子的实例数据的计算结果,用mathematica软件模拟出氦分子的分子力曲线。同时,根据分子力为保守力,结合分子力函数表达式,给出分子势能函数表达式,仍然通过氦分子的实例数据的计算结果,用mathematica软件模拟出氦分子的分子势能函数曲线。The essence of molecular force is the electromagnetic interaction through the molecular potential field, and its action law is very complicated. Due to the complexity of molecular force, the molecular potential energy function is more complicated. In this paper, based on classical electromagnetic theory, by constructing a simplified model of monoatomic nonpolar molecules, isolated molecules are reduced to monoatomic spherical models of nonpolar molecules, and the complex electron cloud of extranuclear electrons moving around the core is simplified to a relatively stable circle Shaped track. According to Coulomb’s law, Ampere’s law and molecular polarization phenomena, the change law of the interaction force between molecules is studied, and the expression of molecular force function is given. It constructs the molecular polarization distance constraint function and gives the calculation results of the example data of helium molecules, and mathematica software is used to simulate the molecular force curve of helium molecules. At the same time, according to the conservative force of molecular force, combined with the expression of molecular force function, the expression of molecular potential energy function is given, and the molecular potential energy function curve of helium molecule is simulated by mathematica software through the calculation result of the example data of helium molecule.

关 键 词:非极性分子 经典电磁理论 电磁相互作用 分子极化 单原子 函数表达式 分子力 安培定律 

分 类 号:G63[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象