检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南大学软件学院,河南开封
出 处:《运筹与模糊学》2016年第4期115-121,共7页Operations Research and Fuzziology
基 金:河南省高等教育教学改革研究项目“大学计算机基础分级分类教学模式研究(2014SJGLX143)”。
摘 要:针对一般统计方法的不足,提出模糊聚类和数据挖掘方法在数据分析中的应用。概要介绍了两种智能分析方法的基本原理,并通过具体案例给出两种分析方法的实验结果,比较了各自的特点。特别提出本文所作的先做聚类分析,再在聚类结果的基础上进行数据挖掘的优势。具有较强的启发性和工程应用参考价值。In view of the deficiency of general statistical methods, this paper presents the application of fuzzy clustering and data mining methods in data analysis. This paper introduces the basic principles of the two kinds of intelligent analysis methods, gives the experimental results of two kinds of analysis methods through specific cases, and compares their characteristics. In this paper, we put forward the advantages of data mining based on clustering results. It has a strong heuristic and engineering application reference value.
关 键 词:模糊聚类 数据挖掘 数据分析 人工智能 应用研究
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249