检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国海洋大学数学科学学院,山东青岛
出 处:《理论数学》2019年第2期152-163,共12页Pure Mathematics
基 金:山东省自然科学基金(ZR2018MA006);山东省研究生导师指导能力提升项目(SDYY17009)支持。
摘 要:数学中最经典的几何不等式就是等周不等式,它刻画了欧式平面中的由简单闭曲线所围区域的面积与周长之间的关系。本文从最经典的等周不等式出发,探究逆向等周不等式的发展进程并归纳总结近年来逆向等周不等式的研究成果,主要从三个方面分别介绍了逆向等周不等式在平面卵形域、高维欧式曲面、流行曲面及一些特殊曲面的发展过程及主要研究成果。The most classical geometric inequality in mathematics is the isoperimetric inequality,which de-scribes the relationship between the area and perimeter of the region enclosed by a simple close curve in a Euclidean plane.Starting from the most classical isoperimetric inequalities,this paper explores the development process of reverse isoperimetric inequalities and summarizes the research results of reverse isoperimetric inequalities in recent years.It mainly introduces the development process and main research results of reverse isoperimetric inequalities in plane oval domain,high-dimensional Euclidean surface,popular surface and some special surface from three aspects.
关 键 词:等周不等式 逆向等周不等式 等周亏格 逆Bonnesen型不等式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112