海森堡群上与分数次积分相关的交换子的有界性  

The Boundedness of Commutators Associated with Fractional Integrals on the Heisenberg Group

在线阅读下载全文

作  者:高春芳 

机构地区:[1]青岛大学数学与统计学院,山东 青岛

出  处:《理论数学》2020年第10期928-937,共10页Pure Mathematics

摘  要:令L=-ΔHn+V为海森堡群Hn上具有Gaussian核上界的Schrödinger算子,其中非负位势V属于逆Hölder类Bq,q≥Q/2。对于0-α/2为L的分数次积分算子。假设b属于比经典BMO型空间大的BMOρθ(Hn)空间。该文证明了交换子[b,L-α/2]从Lp1(Hn)到Lp2(Hn)是有界的,其中112 =1/p1-α/Q。Let L=-ΔHn+V be the Schrödinger operator on Hn with Gaussian kernel bounds, where the nonnegative potential V belongs to the reverse Hölder class Bq, q≥Q/2. Let L-α/2 be the frac-tional integrals of L for 0ρθ(Hn), which is larger than classical BMOρθ(Hn). We obtain the boundedness of the commutator [b,L-α/2] from Lp1(Hn) to Lp2(Hn), where 112 =1/ p1-α/Q.

关 键 词:海森堡群 Gaussian上界 交换子 新BMO函数 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象