检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《理论数学》2021年第7期1441-1450,共10页Pure Mathematics
摘 要:本文运用Abel积分生成元的切比雪夫理论结合多项式符号计算技术,对(4, 3)型的Liénard系统对应的Abel积分的零点个数上界进行研究分析。求出I(h,δ)的零点个数的最小上界。讨论以下系统 Abel积分的零点个数问题。通过对其Abel积分I(h,δ)的深入研究,证明阿贝尔积分的生成元能否构成Chebeyshev系统,得出其零点个数的上界。In this paper, we aim to use Chebyshev theory of Abel integral generator and polynomial symbolic computing technology to study and analyze the upper bound of the number of zeros of Abel integral corresponding to (4, 3) Liénard system. The minimum upper bound of the number of zeros for I(h,δ) is proved. The number of zeros of Abel integral of following Liénard system is considered . Through the in-depth study of Abel integral I(h,δ), it is proved that the generator of Abel integral can form Chebeyshev system, and a conclu-sion is shown.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.143.52