检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《理论数学》2022年第10期1810-1825,共16页Pure Mathematics
摘 要:本文的目的是将Hilbert空间上的一些性质推广到Banach空间上.本文首先给出箭图及其Banach表示的定义, 关于收点与发点的反射函子以及共变函子的定义, 利用开映射定理,代数同构等定理定义,说明了两类反射函子可通过共变函子建立一个等式, 然后讨论箭图的Banach 表示之间自同态集与其在反射函子作用下的Banach 表示之间自同态集对应的反射函子映射的代数性质, 证明反射函子映射是个代数同构。The purpose of this paper is to extend some properties of Hilbert spaces to Banach spaces. This paper gave the definitions of the quivers and their Banach representations, the definitions of the reflection functors at the sinks and the sources, and the definitions of contravariant functors. By using the open mapping theorem, algebraic isomorphism and other definition theorems, it is shown that two kinds of reflection functors can establish an equality through covariant functors. It also discussed the algebraic properties of the reflection functor map corresponding to the automorphism sets between the Banach representations of the quivers and their Banach representations under the action of the reflection functors. It proved that the reflection functor map is an algebraic isomorphism.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43