检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《理论数学》2023年第3期493-515,共23页Pure Mathematics
摘 要:为提升瞬时互相关函数型Wigner分布(Instantaneous Cross-correlation Function Wigner Distribu-tion, ICFWD)检测性能,本文采用τ-Wigner分布与其结合,提出瞬时互相关函数型τ-Wigner分布(Instantaneous Cross-correlation Function τ-Wigner Distribution, ICFτWD),通过构建其输出信噪比不等式模型克服优化模型无法针对双分量线性调频(Linear Frequency-Modulated, LFM)信号进行求解的困难,得出有关线性正则变换(Linear Canonical Transform, LCT)自由参数与参数τ的不等式约束,据此实现白噪声干扰的单、双分量LFM信号高性能检测。数值仿真实验验证了理论分析的正确性,以及ICFτWD在检测性能方面的优势。To improve the detection performance of the instantaneous cross-correlation function Wigner distribution (ICFWD), this paper combines the τ-Wigner distribution with the ICFWD to propose the instantaneous cross-correlation function τ-Wigner distribution (ICFτWD). In this study, we overcome the difficulty that the optimization model fails to solve for the two-component linear frequency-modulated (LFM) signal by constructing the output signal-to-noise ratio (SNR) inequality model of the ICFτWD, and obtain the inequality constraints on the LCT free parameter and the parameter τ. Accordingly, we achieve the high-performance detection of the white noise jamming single component and two-component LFM signals. Numerical simulation experiments verify the correctness of the theoretical analysis and the advantages of the ICFτWD in the detection perfor-mance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.180.66