检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学理学院,上海
出 处:《理论数学》2023年第4期1090-1121,共32页Pure Mathematics
摘 要:本文研究了一类非线性耦合KdV型波动方程的精确孤波解、周期波解以及它们随Hamilton能量的演变关系。文中利用平面动力系统的方法对该方程进行了详细的定性分析,通过首次积分法求出了该方程的3种孤波解,其中对有界有理函数波解和扭状孤波解的求解是创新性的解。求出了该方程的7种雅可比椭圆函数周期波解,尤其是利用恰当变换求出了非对称同宿轨所围的闭轨对应的新周期波解,以及包围同宿轨的闭轨对应的新周期波解。文中将所求的孤波解和周期波解与Hamilton能量对应起来,并发现了所研方程为什么能产生孤波解和周期波解,实际上是该方程解的振幅对应的Hamilton系统的能量变化起着关键的作用。In this paper, the exact solitary and periodic wave solutions of a class of nonlinear coupled KdV wave equations and their evolution with Hamilton energy are studied. The equation is qualitative analysis in detail by using the method of planar dynamical system. Three kinds of solitary wave solutions of the equation are obtained by the first integral method, among which the bounded ra-tional function wave solution and the kink-shaped solitary wave solutions are new ones. Seven kinds of Jacobi elliptic function periodic wave solutions of the equation are obtained, especially the new periodic wave solutions corresponding to the closed orbit surrounded by the asymmetric homoclinic orbit and the new periodic wave solutions corresponding to the closed orbit surrounding the homoclinic orbit are obtained by using the appropriate transformation. The soliton and periodic wave solutions are associated with the Hamilton energy, and the reason why the soliton and periodic wave solutions can be produced is found. In fact, the energy change of the Hamilton system corresponding to the amplitude of the solution of the equation plays a key role.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7