检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《理论数学》2023年第9期2536-2559,共24页Pure Mathematics
摘 要:为了更合理地描述金融市场里股票等风险资产的“跳跃”、“尖峰厚尾”以及多周期现象,本文通过引入Merton跳跃、分数阶几何布朗运动以及多尺度理论,研究了在标的资产满足带跳多尺度分数阶几何布朗运动的假设下,欧式期权的定价问题。首先,本文证明了多尺度分数阶跳–扩散过程的伊藤公式,利用无套利原理和风险中性原理,得到了欧式期权价格满足的分数阶Black-Scholes方程。另一方面,本文根据分数布朗运动的Girsanov定理,建立了带跳多尺度分数阶布朗运动下风险中性的等价鞅测度,从而利用鞅定价方法得到欧式看涨看跌期权的定价公式及平价公式。最后通过数值模拟证明了该定价模型的科学性。In order to describe more reasonably the “jump”, “spike thick tail” and multi-period phenomenon of stock prices in the financial market, this paper studies the European options pricing problem while the underlying asset satisfies the assumption of jump-diffusion and multi-scale fractional order geometric Brownian motions, by introducing Merton jump, fractional geometric Brownian motion and multi-scale theory respectively. On the one hand, this paper first proves the Ito’s formula for the multi-scale fractional Brownian motion with jumps, then derives the fractional Black-Scholes equation by using the no-arbitrage principle and the risk neutrality principle. On the other hand, based on Girsanov’s theorem of fractional Brownian motion, this paper establishes the risk-neutral equivalent martingale measure for the multi-scale fractional Brownian motion with jumps. And then, this paper obtains the call-put pricing formula and parity formula for European options by using equivalent martingale measure. Finally, numerical simulation proves the scientific nature of the pricing model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49