检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京邮电大学理学院,北京
出 处:《理论数学》2024年第2期719-732,共14页Pure Mathematics
摘 要:本文研究了一类二阶非线性抛物型偏微分方程反射问题,通过构造反射项的近似形式,给出了此反射方程的近似方程,即反射偏微分方程的惩罚方程。为了弱化条件,我们引入与反射问题等价的变分不等式问题,证明了惩罚方程的解收敛于变分不等式问题的解,此外由于反射项近似的特殊性,我们得到了其收敛速度,并且可以通过调整惩罚方程中的参数来控制反射方程解的精度。In this article, we mainly study a class of second-order nonlinear parabolic partial differential equation with one reflecting wall. By constructing an approximate form of the reflection term, we provide an approximate equation for this reflection equation, which is the penalty equation for the reflection partial differential equation. In order to weaken the condition, we introduce a variational inequality problem equivalent to the reflection problem and prove that the solution of the penalty equation converges to the solution of the variational inequality problem. Furthermore, due to the particularity of the approximate reflection term, the convergence rate of the solution is given. And the accuracy of the reflection equation solution can be controlled by adjusting the parameters in the penalty equation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43