检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:米娜
出 处:《理论数学》2024年第4期114-118,共5页Pure Mathematics
摘 要:2019年人教版高中数学教科书必修第一册有一则“阅读与思考”材料–集合中元素的个数,其指出:有限集合中元素的个数可以一一数出来,便能通过比较自然数的大小直接比较有限集合元素个数的多少。而对于元素个数无限的集合,如N={0,1,2,…,n,…},A={0,2,4,…,2n,…}无法一一数出集合中元素的个数,又该如何比较它们元素“个数”的多少呢?本文尝试类比比较两个有限集元素个数的方法,探讨如何比较两个无限集的元素“个数”。The first volume of the compulsory high school mathematics textbook of the 2019 People’s Education Edition has a “reading and thinking” material—the number of elements in the set, which points out that the number of elements in the finite set can be counted one by one, and the number of elements in the finite set can be directly compared by comparing the size of the natural number. For a set with an infinite number of elements, such as N={0,1,2,…,n,…} and A={0,2,4,…,2n,…}, the number of elements in the set can’t be counted one by one, so how to compare the number of their elements? This paper tries to compare the number of elements of two finite sets by analogy, and discusses how to compare the “number” of elements of two infinite sets.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.158.217