检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学理学院,上海
出 处:《理论数学》2024年第8期6-11,共6页Pure Mathematics
摘 要:在教学过程中,我们发现拉格朗日中值定理是学生学习微积分的巨大障碍,这是因为拉格朗日中值定理是微分中值定理的核心内容,是研究函数与导数之间联系的理论工具,在微积分学中起着至关重要的作用,应用十分广泛。本文重点研究拉格朗日中值定理在证明导数极限定理、求函数极限问题、证明不等式以及证明函数单调性方面的应用,以及拉格朗日中值定理的两个推广。希望本文可以对学生学习微积分有所帮助。During the teaching process, we found that the Lagrange Mean Value Theorem is a significant obstacle for students learning calculus. The Lagrange Mean Value Theorem is the core content of the Mean Value Theorem in differential calculus. It is a theoretical tool for studying the relationship between functions and their derivatives and plays a crucial role in calculus, with a wide range of applications. This paper focuses on the application of the Lagrange Mean Value Theorem in proving the derivative limit theorem, solving limit problems of functions, proving inequalities, and proving the monotonicity of functions, as well as two extensions of the Lagrange Mean Value Theorem. It is hoped that this article can be of assistance to students in their study of calculus.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7