检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《理论数学》2025年第1期198-210,共13页Pure Mathematics
摘 要:息肉的准确分割对结直肠癌的治疗具有重要意义。虽然现有的方法已经取得了良好的分割效果,但仍然存在一些挑战。为此,我们提出了一个新的多尺度特征有效融合网络(MFFNet),用于精确分割息肉。具体来说,考虑到息肉的尺寸差异,我们使用改进的Pvt-v2作为编码器(TC编码器,TC encoder),提取丰富的多尺度特征。然后,应用通道–空间模块(Channel Spatial Module, CSM)来抑制背景信息,防止信息的冗余。为了使多尺度特征进行有效融合,我们提出了融合注意力模块(Fusion Attention Block, FAB),该模块充分学习多层次特征之间的上下文相关性,以进一步精确定位息肉区域。在5个公共数据集上的实验表明,我们的MFFNet比其他方法具有更好的学习和泛化能力。Accurate segmentation of polyps is important in the management of colorectal cancer. Although existing methods have achieved good segmentation results, there are still some challenges. To this end, we propose a new Multi-Scale Feature Effective Fusion Network (MFFNet) for accurate polyp segmentation. Specifically, considering the size difference of polyps, we use the improved Pvt-v2 as an encoder (TC encoder) to extract rich multi-scale features. Then, the Channel-Spatial Module (CSM) is applied to minimize background interference and prevent the redundancy of information. To enable effective fusion of multi-scale features, we propose the Fusion Attention Block (FAB), which fully learns the contextual correlations between multi-level features to further pinpoint the polyp region. Experiments on five public datasets show that our MFFNet has better learning and generalization capabilities than other methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222