检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京邮电大学计算机学院,江苏 南京
出 处:《软件工程与应用》2023年第4期609-619,共11页Software Engineering and Applications
摘 要:深度人脸识别通过大规模数据集训练卷积神经网络获取更鲁棒的人脸表示,极大的提升了人脸识别性能。文中总结了深度人脸识别方法的发展脉络,首先根据卷积神经网络的不同发展阶段回顾了现有的深度人脸识别方法,其次对基于欧几里得距离以及基于角余弦裕度的损失函数进行了回顾,同时总结了一些针对特定任务的人脸识别方法。然后总结了现有的人脸识别数据集以及人脸识别性能的评价指标,并对主流深度人脸识别方法进行了比较。最后总结了人脸识别当前面临的挑战和未来的发展趋势。Deep face recognition greatly improves the performance of face recognition by training convolutional neural networks on large-scale data sets to obtain more robust face representation. This paper summarizes the development of depth face recognition methods. First, the existing depth face recognition methods are reviewed according to the different development stages of convolutional neural networks. Secondly, the loss functions based on Euclidean distance and angular cosine margin are reviewed, and some task-specific face recognition methods are summarized. Then, the existing data sets and the evaluation indicators of face recognition performance are summarized, and the mainstream depth face recognition methods are compared. Finally, the current challenges and future trends of face recognition are summarized.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7