检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东华大学旭日工商管理学院,上海
出 处:《服务科学和管理》2023年第1期37-47,共11页Service Science and Management
摘 要:针对互联网环境下家政服务员人力资源管理场景的变化,本文将LightGBM算法与SHAP模型结合,形成解决互联网背景下家政服务员离职问题的集成方法。以企业真实数据为研究对象,经数据预处理后建立LightGBM模型进行预测,并与KNN、逻辑回归、决策树、随机森林和GBDT算法对比,结果表明,LightGBM模型的准确率、F1值与AUC值分别为81.23%、84.41%和86.5%,优于其他算法。最终使用SHAP模型分析影响员工离职的重要因素,以此增强模型的可解释性,为企业管理者进行决策提供依据。In response to the changes in the human resource management scenario of domestic helpers in the Internet environment, this paper combines the LightGBM algorithm with the SHAP model to form an integrated approach to solve the problem of domestic helpers’ leaving in the Internet environ-ment. Using real data from enterprises as the research object, the LightGBM model was established for prediction after data pre-processing, and compared with KNN, Logistic Regression, Decision Tree, Random Forest and GBDT algorithm, and the results showed that the accuracy, F1 value and AUC value of LightGBM model were 81.23%, 84.41% and 86.5% respectively, which were better than other algorithms. Finally, the SHAP model is used to analyze the important factors influencing helper turnover, thus enhancing the interpretability of the model and providing a basis for corporate managers to make decisions.
关 键 词:随机森林 数据预处理 可解释性 决策树 人力资源管理 家政服务员 F1值 KNN
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249