检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:倪霓
机构地区:[1]中国矿业大学(北京)文法学院,北京
出 处:《教育进展》2025年第1期627-633,共7页Advances in Education
基 金:中国矿业大学(北京) 2024年研究生教育教学改革项目(项目编号:YJG2024020)。
摘 要:随着人工智能技术的飞速发展,语音识别和机器翻译技术日渐成熟并且不可避免地逐渐进入英语课堂。同声传译课程中涉及的听力理解和即时翻译两大基本学习过程也是受到语音识别和机器翻译技术冲击最直接的两个方面。因此,教师在教学过程互动和教学结果评估等多方面需要做出适应性的改变。本研究基于齐莫曼的自主学习模型,设计了一种将语音识别和机器翻译等人工智能技术融入同声传译自主学习模式的方法,探讨语音识别和机器翻译等人工智能技术对同声传译自主学习过程的影响。实验表明,语音识别和机器翻译等人工智能工具可以有效融入同声传译自主学习过程,并且能对自主学习过程中的自主选材、分组讨论和译文评价等方面产生正向影响。With rapid development of artificial intelligence technologies, voice recognition and machine translation are becoming increasingly mature and have found their way into English classrooms. The two most basic learning processes involved in simultaneous interpretation course, listening comprehension and immediate interpretation, are also the two aspects most directly affected by voice recognition and machine translation. Therefore, teachers need to make adaptive changes in multiple aspects such as interactive teaching process and teaching outcome assessment. Based on Zimmerman’s model of autonomous learning, this study has integrated artificial intelligence tools including voice recognition and machine translation into autonomous simultaneous interpretation learning mode and tries to discuss their impacts on the process of autonomous simultaneous interpretation learning. The study finds out that artificial intelligence tools can be effectively integrated into the process of autonomous simultaneous interpretation learning, and can have positive impacts on the processes including self-selection of materials, group discussion, and translation evaluation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.19.195