Environmental Impact of High Altitudes on the Operation of PEM Fuel Cell Based UAS  被引量:1

Environmental Impact of High Altitudes on the Operation of PEM Fuel Cell Based UAS

在线阅读下载全文

作  者:Ibrahim M. Saleh Rashid Ali Hongwei Zhang 

机构地区:[1]Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK [2]Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK

出  处:《Energy and Power Engineering》2018年第3期87-105,共19页能源与动力工程(英文)

摘  要:Fuel cell is a device that converts the chemical energy in the reactants into the electrical energy after steps of sequential electrochemical processes with no significant impact on the environment. For high altitude long endurance (HALE) of unmanned aircraft system (UAS) where fuel cell operates as a prime source of power, the operation and performance of a PEM fuel cell at different level of altitudes is vitally important. In this paper, the impact of direct using extracted air from high altitudes atmosphere in order to feed the stack is investigated, and the governing equations of the supplied air and oxygen to the PEM fuel cell stack are developed. The impact of high altitudes upon the operation and the consumption of air are determined in order to maintain certain level of delivered power to the load. Also the implications associated with operating the PEM fuel cell stack at high altitudes and different technical solutions are proposed. Various modes of Integral, Proportional-Integral, and Proportional-Integral-Derivative controller are introduced and examined for different time setting responses in order to determine the most adequate trade-off choice between fast response and reactants consumption which provides the necessary optimization of the air consumption for the developed model of PEM fuel cell used for UAS operation.Fuel cell is a device that converts the chemical energy in the reactants into the electrical energy after steps of sequential electrochemical processes with no significant impact on the environment. For high altitude long endurance (HALE) of unmanned aircraft system (UAS) where fuel cell operates as a prime source of power, the operation and performance of a PEM fuel cell at different level of altitudes is vitally important. In this paper, the impact of direct using extracted air from high altitudes atmosphere in order to feed the stack is investigated, and the governing equations of the supplied air and oxygen to the PEM fuel cell stack are developed. The impact of high altitudes upon the operation and the consumption of air are determined in order to maintain certain level of delivered power to the load. Also the implications associated with operating the PEM fuel cell stack at high altitudes and different technical solutions are proposed. Various modes of Integral, Proportional-Integral, and Proportional-Integral-Derivative controller are introduced and examined for different time setting responses in order to determine the most adequate trade-off choice between fast response and reactants consumption which provides the necessary optimization of the air consumption for the developed model of PEM fuel cell used for UAS operation.

关 键 词:PEM Fuel Cell High ALTITUDE Long ENDURANCE PID CONTROLLER UAS 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象