Central Glutamatergic-Purinergic System Importance in Brain/Neural Plasticity  

在线阅读下载全文

作  者:Bogdan Feliks Kania Danuta Wronska Dorota Zieba 

机构地区:[1]Veterinary Institute,University Center for Veterinary Medicine,Jagiellonian University&Agriculture University,Cracow,Poland [2]Department of Physiology and Endocrinology of Animals,Faculty of Animal Sciences,Hugon Kollataj Agricultural University in Cracow,Cracow,Poland [3]Department of Animal Biotechnology,Faculty of Animal Sciences,Hugon Kollataj Agricultural University in Cracow,Cracow,Poland

出  处:《Journal of Behavioral and Brain Science》2017年第7期259-272,共14页行为与脑科学期刊(英文)

摘  要:The proteolysis of the extracellular matrix plays a key role in the synaptic neuroplasticity of the central nervous system (CNS), which results in learning and memory. Proteases from the serine family and metalloproteinases of the extracellular matrix are localized within the synapses and are released into the extracellular space in proportion to the degree of neuronal excitation. These enzymes cause changes in the morphology, shape and size, and the overall number of synapses and synthesize new synaptic connections. The proteinase also changes the function of receptors, and consequently, the secretion of neurotransmitter/neuromodulator from the presynaptic glutamatergic and/or purinergic elements are either strengthened or weakened. Neuroglia involved in homeostasis, melanin synthesis and defense of the brain contain different combinations of purinergic receptors, which contributes to many neurotransmitters. This review summarizes a concept of brain plasticity, the role of ATP and P2 receptors interaction with glutamatergic system during plasticity of the brain in the one hand and after physical exercise in the other, which may be triggering phenomena facilitative synaptic plasticity as well as potentiates an personal efficiency to react to biobehavioral adaptation and disorders.The proteolysis of the extracellular matrix plays a key role in the synaptic neuroplasticity of the central nervous system (CNS), which results in learning and memory. Proteases from the serine family and metalloproteinases of the extracellular matrix are localized within the synapses and are released into the extracellular space in proportion to the degree of neuronal excitation. These enzymes cause changes in the morphology, shape and size, and the overall number of synapses and synthesize new synaptic connections. The proteinase also changes the function of receptors, and consequently, the secretion of neurotransmitter/neuromodulator from the presynaptic glutamatergic and/or purinergic elements are either strengthened or weakened. Neuroglia involved in homeostasis, melanin synthesis and defense of the brain contain different combinations of purinergic receptors, which contributes to many neurotransmitters. This review summarizes a concept of brain plasticity, the role of ATP and P2 receptors interaction with glutamatergic system during plasticity of the brain in the one hand and after physical exercise in the other, which may be triggering phenomena facilitative synaptic plasticity as well as potentiates an personal efficiency to react to biobehavioral adaptation and disorders.

关 键 词:Glutamatergic/Purinergic System NEUROPLASTICITY Physical Exercise Neuroglia Dependences 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象