MicroRNA Expression Profiles in the Neonatal Rat Hippocampus Exposed to Normobaric Hyperoxia  

MicroRNA Expression Profiles in the Neonatal Rat Hippocampus Exposed to Normobaric Hyperoxia

在线阅读下载全文

作  者:Yuewei Xia Tong Liu Ruolin Zhang Tao Bo Yuewei Xia;Tong Liu;Ruolin Zhang;Tao Bo(Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China;Department of Neonatology, The Changsha Maternal and Child Health Hospital, Changsha, China)

机构地区:[1]Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China [2]Department of Neonatology, The Changsha Maternal and Child Health Hospital, Changsha, China

出  处:《Open Journal of Pediatrics》2024年第6期1038-1049,共12页儿科学期刊(英文)

摘  要:Objective: This study aimed to identify differentially expressed microRNAs (miRNAs) using microarray and to predict special target genes using bioinformatics methods in the neonatal rat hippocampus after normobaric hyperoxia exposure, and to unravel the molecular mechanisms of developing brain injury induced by normobaric hyperoxia. Methods: Eight neonatal Sprague-Dawley rats at postnatal 1 day were divided equally between a control group and an experimental group, followed by 24-hour exposure to 21% oxygen and (95 ± 5) % oxygen, respectively. Total RNAs were extracted from the rat hippocampus. Three samples were randomly selected from each group to detect differentially expressed mRNA profiles using the affymetrix GeneChip Rat Genome 230 2.0 Array. Differentially expressed miRNA profiles were determined by miRNA enrichment analysis. The starBase software was applied to predict target genes abundantly expressed in the hippocampus, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted for bioinformatics analysis. Results: Microarray analysis revealed 681 differentially expressed miRNAs in the neonatal rat hippocampus after normobaric hyperoxia exposure. Only one miRNA, miR-489-5p, was significantly upregulated (P Mdfic. The other 680 miRNAs were significantly downregulated (P P Gjb6 and Bnc2. KEGG analysis indicated that differentially expressed miRNAs were closely related to multiple signaling pathways. Conclusions: Differentially expressed miRNA profiles in the neonatal rat hippocampus after normobaric hyperoxia exposure may be involved in the physiopathological processes of developmental midbrain injury induced by normobaric hyperoxia.Objective: This study aimed to identify differentially expressed microRNAs (miRNAs) using microarray and to predict special target genes using bioinformatics methods in the neonatal rat hippocampus after normobaric hyperoxia exposure, and to unravel the molecular mechanisms of developing brain injury induced by normobaric hyperoxia. Methods: Eight neonatal Sprague-Dawley rats at postnatal 1 day were divided equally between a control group and an experimental group, followed by 24-hour exposure to 21% oxygen and (95 ± 5) % oxygen, respectively. Total RNAs were extracted from the rat hippocampus. Three samples were randomly selected from each group to detect differentially expressed mRNA profiles using the affymetrix GeneChip Rat Genome 230 2.0 Array. Differentially expressed miRNA profiles were determined by miRNA enrichment analysis. The starBase software was applied to predict target genes abundantly expressed in the hippocampus, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted for bioinformatics analysis. Results: Microarray analysis revealed 681 differentially expressed miRNAs in the neonatal rat hippocampus after normobaric hyperoxia exposure. Only one miRNA, miR-489-5p, was significantly upregulated (P Mdfic. The other 680 miRNAs were significantly downregulated (P P Gjb6 and Bnc2. KEGG analysis indicated that differentially expressed miRNAs were closely related to multiple signaling pathways. Conclusions: Differentially expressed miRNA profiles in the neonatal rat hippocampus after normobaric hyperoxia exposure may be involved in the physiopathological processes of developmental midbrain injury induced by normobaric hyperoxia.

关 键 词:Normobaric Hyperoxia MICRORNA NEONATE Brain Injury HIPPOCAMPUS 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象