检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Justin Steven Calder Prentice
机构地区:[1]不详
出 处:《Applied Mathematics》2011年第6期711-717,共7页应用数学(英文)
摘 要:We present an algorithm for determining the stepsize in an explicit Runge-Kutta method that is suitable when solving moderately stiff differential equations. The algorithm has a geometric character, and is based on a pair of semicircles that enclose the boundary of the stability region in the left half of the complex plane. The algorithm includes an error control device. We describe a vectorized form of the algorithm, and present a corresponding MATLAB code. Numerical examples for Runge-Kutta methods of third and fourth order demonstrate the properties and capabilities of the algorithm.We present an algorithm for determining the stepsize in an explicit Runge-Kutta method that is suitable when solving moderately stiff differential equations. The algorithm has a geometric character, and is based on a pair of semicircles that enclose the boundary of the stability region in the left half of the complex plane. The algorithm includes an error control device. We describe a vectorized form of the algorithm, and present a corresponding MATLAB code. Numerical examples for Runge-Kutta methods of third and fourth order demonstrate the properties and capabilities of the algorithm.
关 键 词:Moderately STIFF Problems RUNGE-KUTTA Stepsize JACOBIAN Stability Region
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3