Existence of Solutions for Boundary Value Problems of Vibration Equation with Fractional Derivative  被引量:1

Existence of Solutions for Boundary Value Problems of Vibration Equation with Fractional Derivative

在线阅读下载全文

作  者:Nan Yao Zeyu Luo 

机构地区:[1]College of Science, University of Shanghai for Science and Technology, Shanghai, China

出  处:《Journal of Applied Mathematics and Physics》2019年第5期1067-1076,共10页应用数学与应用物理(英文)

摘  要:In this paper, we investigate the solvability of boundary value problems for a class of vibration differential equation describing the fractional order damped system with signal stimulus. By presenting kernel function through the Laplace transform, and using the eigenvalue and the improved Leray-Schauder degree, the existence of solutions for boundary value problems is established.In this paper, we investigate the solvability of boundary value problems for a class of vibration differential equation describing the fractional order damped system with signal stimulus. By presenting kernel function through the Laplace transform, and using the eigenvalue and the improved Leray-Schauder degree, the existence of solutions for boundary value problems is established.

关 键 词:Caputo DERIVATIVE Boundary Value Problems for Vibration Equation LAPLACE TRANSFORM EIGENVALUE Improved Leray-Schauder Degree 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象