检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Instituto de Flsica, Universidade Federal de Goiás, Goiania, Brasil
出 处:《Journal of Modern Physics》2015年第14期2093-2108,共16页现代物理(英文)
摘 要:In this work we are formulating a new theory for describing the waving nature of a microscopic electric particle. Based on the predictions of the Quantum Oscillatory Modulated Potential—QOMP, for describing the interaction between two microscopic electric particles, electron-electron, for instance, we are postulating that the waving behavior of these particles may be an attribute of the charges of the particles and not their masses as currently accepted. For a microscopic electric charge, we are presenting new arguments showing that the electric field in the vicinity of a microscopic charge is spatially waving and can be determined as the gradient per unit of charge of this new quantum interaction potential, with use of an appropriated phase factor to account for the behavior of an unbound electron. Differently of what is predicted by the classical Coulomb electric field, when a charged particle is moving under the action of a potential of V volts, the new electric field existing around the charge has the form of a wave packet. For typical values of the potential V, the wavelength of the waving electric field is in very good agreement with those experimentally observed with diffraction of electrons in crystalline solids.In this work we are formulating a new theory for describing the waving nature of a microscopic electric particle. Based on the predictions of the Quantum Oscillatory Modulated Potential—QOMP, for describing the interaction between two microscopic electric particles, electron-electron, for instance, we are postulating that the waving behavior of these particles may be an attribute of the charges of the particles and not their masses as currently accepted. For a microscopic electric charge, we are presenting new arguments showing that the electric field in the vicinity of a microscopic charge is spatially waving and can be determined as the gradient per unit of charge of this new quantum interaction potential, with use of an appropriated phase factor to account for the behavior of an unbound electron. Differently of what is predicted by the classical Coulomb electric field, when a charged particle is moving under the action of a potential of V volts, the new electric field existing around the charge has the form of a wave packet. For typical values of the potential V, the wavelength of the waving electric field is in very good agreement with those experimentally observed with diffraction of electrons in crystalline solids.
关 键 词:POTENTIAL Electron Wavelength Wave PACKET BOSONIC ATOM
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15