Exploring Biocomplexity in Cancer: A Comprehensive Review  

Exploring Biocomplexity in Cancer: A Comprehensive Review

在线阅读下载全文

作  者:Andras Szasz Gyula Peter Szigeti Andras Szasz;Gyula Peter Szigeti(Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, Gö,dö,llő, Hungary;John von Neumann Faculty of Informatics, Ó,buda University, Budapest, Hungary)

机构地区:[1]Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, Gö,dö,llő, Hungary [2]John von Neumann Faculty of Informatics, Ó,buda University, Budapest, Hungary

出  处:《Open Journal of Biophysics》2024年第2期154-238,共85页生物物理学期刊(英文)

摘  要:Living objects have complex internal and external interactions. The complexity is regulated and controlled by homeostasis, which is the balance of multiple opposing influences. The environmental effects finally guide the self-organized structure. The living systems are open, dynamic structures performing random, stationary, stochastic, self-organizing processes. The self-organizing procedure is defined by the spatial-temporal fractal structure, which is self-similar both in space and time. The system’s complexity appears in its energetics, which tries the most efficient use of the available energies;for that, it organizes various well-connected networks. The controller of environmental relations is the Darwinian selection on a long-time scale. The energetics optimize the healthy processes tuned to the highest efficacy and minimal loss (minimalization of the entropy production). The organism is built up by morphogenetic rules and develops various networks from the genetic level to the organism. The networks have intensive crosstalk and form a balance in the Nash equilibrium, which is the homeostatic state in healthy conditions. Homeostasis may be described as a Nash equilibrium, which ensures energy distribution in a “democratic” way regarding the functions of the parts in the complete system. Cancer radically changes the network system in the organism. Cancer is a network disease. Deviation from healthy networking appears at every level, from genetic (molecular) to cells, tissues, organs, and organisms. The strong proliferation of malignant tissue is the origin of most of the life-threatening processes. The weak side of cancer development is the change of complex information networking in the system, being vulnerable to immune attacks. Cancer cells are masters of adaptation and evade immune surveillance. This hiding process can be broken by electromagnetic nonionizing radiation, for which the malignant structure has no adaptation strategy. Our objective is to review the different sides of living complexity Living objects have complex internal and external interactions. The complexity is regulated and controlled by homeostasis, which is the balance of multiple opposing influences. The environmental effects finally guide the self-organized structure. The living systems are open, dynamic structures performing random, stationary, stochastic, self-organizing processes. The self-organizing procedure is defined by the spatial-temporal fractal structure, which is self-similar both in space and time. The system’s complexity appears in its energetics, which tries the most efficient use of the available energies;for that, it organizes various well-connected networks. The controller of environmental relations is the Darwinian selection on a long-time scale. The energetics optimize the healthy processes tuned to the highest efficacy and minimal loss (minimalization of the entropy production). The organism is built up by morphogenetic rules and develops various networks from the genetic level to the organism. The networks have intensive crosstalk and form a balance in the Nash equilibrium, which is the homeostatic state in healthy conditions. Homeostasis may be described as a Nash equilibrium, which ensures energy distribution in a “democratic” way regarding the functions of the parts in the complete system. Cancer radically changes the network system in the organism. Cancer is a network disease. Deviation from healthy networking appears at every level, from genetic (molecular) to cells, tissues, organs, and organisms. The strong proliferation of malignant tissue is the origin of most of the life-threatening processes. The weak side of cancer development is the change of complex information networking in the system, being vulnerable to immune attacks. Cancer cells are masters of adaptation and evade immune surveillance. This hiding process can be broken by electromagnetic nonionizing radiation, for which the malignant structure has no adaptation strategy. Our objective is to review the different sides of living complexity

关 键 词:Complexity Networks SMALL-WORLD Genetic Mutations SELF-ORGANIZING Self-Symmetry Energetic Balance Entropy Nash Equilibrium Games Evolution CANCER Therapy 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象