检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:R. L. Burrows
机构地区:[1]Plant Science Department, South Dakota State University, Rapid City, USA
出 处:《American Journal of Plant Sciences》2014年第1期103-111,共9页美国植物学期刊(英文)
摘 要:Arbuscular-mycorrhizal fungi (AMF) are integral components of most terrestrial ecosystems, with complex interactions between plants and AMF. Our study assessed the impact of plant diversity of native grassland species on AMF infectivity and production of glomalin, an AMF hyphal glycoprotein that may play an important role in soil aggregation. The study was conducted over a 3-year period in field plots planted with 1, 2, 8, or 16 plant species. The mycorrhizal infection potential (MIP) of the plots was assayed in the greenhouse. Glomalin production and MIP were lowest in monocultures and were more closely correlated with plant diversity than with plant cover. Spore density was also greater in higher diversity plots. Lower AMF activity in monoculture plots may contribute to lower productivity and soil quality in plant monocultures. Immunoreactive glomalin levels varied seasonally, with higher levels in late summer than in late spring. Positive correlations were found between glomalin levels and spore density, and between MIP and spore density, but not between MIP and glomalin.Arbuscular-mycorrhizal fungi (AMF) are integral components of most terrestrial ecosystems, with complex interactions between plants and AMF. Our study assessed the impact of plant diversity of native grassland species on AMF infectivity and production of glomalin, an AMF hyphal glycoprotein that may play an important role in soil aggregation. The study was conducted over a 3-year period in field plots planted with 1, 2, 8, or 16 plant species. The mycorrhizal infection potential (MIP) of the plots was assayed in the greenhouse. Glomalin production and MIP were lowest in monocultures and were more closely correlated with plant diversity than with plant cover. Spore density was also greater in higher diversity plots. Lower AMF activity in monoculture plots may contribute to lower productivity and soil quality in plant monocultures. Immunoreactive glomalin levels varied seasonally, with higher levels in late summer than in late spring. Positive correlations were found between glomalin levels and spore density, and between MIP and spore density, but not between MIP and glomalin.
关 键 词:ARBUSCULAR MYCORRHIZAE GLOMALIN Diversity Extraradical HYPHAE Soil AGGREGATION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15