CO<sub>2 </sub>and Chamber Effects on Epidermal Development in Field-Grown Peanut (<i>Arachis hypogaea</i>L.)  

CO<sub>2 </sub>and Chamber Effects on Epidermal Development in Field-Grown Peanut (<i>Arachis hypogaea</i>L.)

在线阅读下载全文

作  者:D. C. Gitz III J. T. Baker H. Echevarria-Laza P. Payton J. R. Mahan R. J. Lascano 

机构地区:[1]Cropping Systems Research Laboratory, ARS-USDA, Lubbock, TX, USA

出  处:《American Journal of Plant Sciences》2017年第3期349-362,共14页美国植物学期刊(英文)

摘  要:Peanut, (Arachis hypogaea L.) cvar. C76-16, was grown either in the field, or in open gas exchange chambers under elevated or ambient CO2 concentrations. Stomatal density and other selected epidermal parameters associated with leaf development and gas exchange were measured on recently fully expanded canopy leaves. It was hypothesized that exclusion of solar UV by chambers would affect stomatal density, but no clear statistically significant chamber effect on stomatal density was found. However, elevated [CO2] did lead to a reduction in both adaxial and abaxial stomatal developmental initiation and in stomatal density. Since each stomate was bounded by companion cells resulting from developmental events, non-random stomatal spacing as the “one cell spacing rule” appears to result from ontogeny rather than a long hypothesized chemical signal inhibiting adjacent meristemoid differentiation into guard cells. A method of visualizing epidermal patterns is also described.Peanut, (Arachis hypogaea L.) cvar. C76-16, was grown either in the field, or in open gas exchange chambers under elevated or ambient CO2 concentrations. Stomatal density and other selected epidermal parameters associated with leaf development and gas exchange were measured on recently fully expanded canopy leaves. It was hypothesized that exclusion of solar UV by chambers would affect stomatal density, but no clear statistically significant chamber effect on stomatal density was found. However, elevated [CO2] did lead to a reduction in both adaxial and abaxial stomatal developmental initiation and in stomatal density. Since each stomate was bounded by companion cells resulting from developmental events, non-random stomatal spacing as the “one cell spacing rule” appears to result from ontogeny rather than a long hypothesized chemical signal inhibiting adjacent meristemoid differentiation into guard cells. A method of visualizing epidermal patterns is also described.

关 键 词:PEANUT STOMA STOMATAL Density Carbon Dioxide Climate Change 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象