检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Marwa Chendeb Mohamad Khalil David Hewson Jacques Duchên
机构地区:[1]不详
出 处:《Journal of Biomedical Science and Engineering》2010年第2期193-199,共7页生物医学工程(英文)
摘 要:The aim of this article is to develop an automatic algorithm for the classification of non stationary signals. The application context is to classify uterine electromyogram (EMG) events to prevent the onset of preterm birth. The idea is to discriminate between the events by allocating them to the physiological classes: contractions, foetus motions, Alvarez or Long Duration Low Frequency waves. Our method is based on the Wavelet Packet (WP) decomposition and the choice of a best basis for classification purpose. Before classification, there is a need to detect events in the recorded signals. The discrimination criterion is based on the calculation of the ratio between intra-class variance and total variance (sum of the intra-class and inter-class variances), calculated directly from the coefficients of the selected WP. We evaluated the performance of the algorithm on real signals by using the classification methods Neural Networks (NN) and Support Vector Machines (SVM). Subband energies of the best selected WP are used as effective features. The determined best basis is applicable to a wide range of uterine EMG signals from large range of patients. In most cases, more than 85% of events are well classified whatever the term of gestation.The aim of this article is to develop an automatic algorithm for the classification of non stationary signals. The application context is to classify uterine electromyogram (EMG) events to prevent the onset of preterm birth. The idea is to discriminate between the events by allocating them to the physiological classes: contractions, foetus motions, Alvarez or Long Duration Low Frequency waves. Our method is based on the Wavelet Packet (WP) decomposition and the choice of a best basis for classification purpose. Before classification, there is a need to detect events in the recorded signals. The discrimination criterion is based on the calculation of the ratio between intra-class variance and total variance (sum of the intra-class and inter-class variances), calculated directly from the coefficients of the selected WP. We evaluated the performance of the algorithm on real signals by using the classification methods Neural Networks (NN) and Support Vector Machines (SVM). Subband energies of the best selected WP are used as effective features. The determined best basis is applicable to a wide range of uterine EMG signals from large range of patients. In most cases, more than 85% of events are well classified whatever the term of gestation.
关 键 词:UTERINE EMG PRETERM BIRTH Wavelet PACKET Best Basis Event CLASSIFICATION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.245.163