The <i>mus</i>309 mutation, defective in DNA double-strand break repair, increases the frequency of X-ray-induced somatic crossing over in <i>Drosophila melanogaster</i>, but the effect is not dose-rate dependent  

The <i>mus</i>309 mutation, defective in DNA double-strand break repair, increases the frequency of X-ray-induced somatic crossing over in <i>Drosophila melanogaster</i>, but the effect is not dose-rate dependent

在线阅读下载全文

作  者:Petter Portin 

机构地区:[1]Laboratory of Genetics, Department of Biology, University of Turku, FIN-20014 Turku, Finland

出  处:《Open Journal of Genetics》2012年第1期39-46,共8页遗传学期刊(英文)

摘  要:Effect of a 1000 R dose of hard X-rays, with two different dose-rates viz. 300 and 1000 R/min on somatic crossing over in the X chromosome of Drosophila melanogaster was studied in two different genotypes. Irradiation was given during the first-instar larval stage of the development. In the control crosses the flies carried wild-type autosomes, but in the experimental crosses the 3rd chromosomes carried a DNA double-strand break repair deficient mus309 mutant gene constitution. As expected, the frequency of X-ray-induced somatic crossing over increased in the mutant flies with both dose-rates of irradiation. As also expected, in the control flies irradiation given with the 300 R/min dose-rate caused more somatic crossovers than irradiation given with the 1000 R/ min rate. However, rather unexpectedly, in the experimental flies there was no significant difference in the frequency of somatic crossing over between the two dose-rates of irradiation. The results can be explained by assuming that X-ray-induced somatic crossing over is a two-step event, and that the mechanism which repairs the lesion caused by the irradiation is controlled by the mus309 gene. In the control flies the repairing mechanism is capable to recover if the irradiation is given with a short term high dose-rate, but is not capable to recover if the irradiation is given with a long lasting low dose-rate. However, in the experimental mutant flies the repairing mechanism is only poorly recovered irrespective of the dose-rate.Effect of a 1000 R dose of hard X-rays, with two different dose-rates viz. 300 and 1000 R/min on somatic crossing over in the X chromosome of Drosophila melanogaster was studied in two different genotypes. Irradiation was given during the first-instar larval stage of the development. In the control crosses the flies carried wild-type autosomes, but in the experimental crosses the 3rd chromosomes carried a DNA double-strand break repair deficient mus309 mutant gene constitution. As expected, the frequency of X-ray-induced somatic crossing over increased in the mutant flies with both dose-rates of irradiation. As also expected, in the control flies irradiation given with the 300 R/min dose-rate caused more somatic crossovers than irradiation given with the 1000 R/ min rate. However, rather unexpectedly, in the experimental flies there was no significant difference in the frequency of somatic crossing over between the two dose-rates of irradiation. The results can be explained by assuming that X-ray-induced somatic crossing over is a two-step event, and that the mechanism which repairs the lesion caused by the irradiation is controlled by the mus309 gene. In the control flies the repairing mechanism is capable to recover if the irradiation is given with a short term high dose-rate, but is not capable to recover if the irradiation is given with a long lasting low dose-rate. However, in the experimental mutant flies the repairing mechanism is only poorly recovered irrespective of the dose-rate.

关 键 词:Ionizing Radiation MITOSIS Mutagenic Sensitivity RECQ Protein X Chromosome 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象