检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Pavel Polasek
机构地区:[1]Water and Wastewater Treatment Consultant, Erasmusrand, South Africa
出 处:《Advances in Chemical Engineering and Science》2014年第2期208-220,共13页化学工程与科学期刊(英文)
摘 要:This paper presents a methodology for evaluating the water purification process efficiency attained by 1) jar tests, which are commonly used to determine the treatability of water, and 2) waterworks performance in different phases of the purification process as well as in its entirety. This methodology provides an important tool for the following: 1) determination of optimised reaction conditions under which water is treatable to its best attainable quality;2) evaluation of the purification process efficiency attained by waterworks during different periods and under different operational conditions;3) comparisons of performance efficiency of different waterworks;and 4) comprehensive commissioning of waterworks and identification of bottlenecks if any exist in process and plant design. This paper describes procedures for pre-processing of water samples to be analysed as well as mathematical formulas for processing of the results obtained. A few examples of the practical application of the methodology are included and the potential to obtain the optimization of waterworks’ purification processes is herein illustrated.This paper presents a methodology for evaluating the water purification process efficiency attained by 1) jar tests, which are commonly used to determine the treatability of water, and 2) waterworks performance in different phases of the purification process as well as in its entirety. This methodology provides an important tool for the following: 1) determination of optimised reaction conditions under which water is treatable to its best attainable quality;2) evaluation of the purification process efficiency attained by waterworks during different periods and under different operational conditions;3) comparisons of performance efficiency of different waterworks;and 4) comprehensive commissioning of waterworks and identification of bottlenecks if any exist in process and plant design. This paper describes procedures for pre-processing of water samples to be analysed as well as mathematical formulas for processing of the results obtained. A few examples of the practical application of the methodology are included and the potential to obtain the optimization of waterworks’ purification processes is herein illustrated.
关 键 词:Water Purification EFFICIENCY DEGREE of Destabilisation DEGREE of AGGREGATION TEST of AGGREGATION TEST of SEDIMENTATION Attained and Attainable Separation EFFICIENCY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222