Model for Assessment Evaluation of Methane Gas Yield Based on Hydraulic Retention Time during Fruit Wastes Biodigestion  

Model for Assessment Evaluation of Methane Gas Yield Based on Hydraulic Retention Time during Fruit Wastes Biodigestion

在线阅读下载全文

作  者:Chukwuka Nwoye Asuke Ferdinand Ijomah Agatha Obiorah Samuelmary 

机构地区:[1]Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria, Nigeria [2]Department of Metallurgical and Materials Engineering, Nnamdi Azikiwe University, Awka, Nigeria

出  处:《Journal of Minerals and Materials Characterization and Engineering》2012年第10期947-952,共6页矿物质和材料特性和工程(英文)

摘  要:This paper presents an assessment evaluation of methane gas yield using a derived model based on the hydraulic retention time (HRT) of the feed stock (waste fruits) undergoing biotreatment in the digester. The derived model;γ = e(3.5436 α + 2.0259) indicates an exponential relationship between methane yield and the HRT. Statistical analysis of the model-predicted and experimental gas methane yield for each value of HRT considered shows a standard error of 0.0081 and 0.0114% respectively. Furthermore, the correlation between methane yield and HRT as obtained from derived model and experimental results were evaluated as 0.9716 and 0.9709 respectively. Methane gas yield per unit HRT as obtained from derived model and experiment are 0.0196 and 0.0235 (m3kg-1 VS) days-1 respectively. Deviational analysis indicates that the maximum deviation of the model-predicted methane yield from the corresponding experimental value is less than 16%. It was also found that the validity of the model is rooted on the expression 0.2822 ln γ = α + 0.5717 where both sides of the expression are correspondingly approximately equal.This paper presents an assessment evaluation of methane gas yield using a derived model based on the hydraulic retention time (HRT) of the feed stock (waste fruits) undergoing biotreatment in the digester. The derived model;γ = e(3.5436 α + 2.0259) indicates an exponential relationship between methane yield and the HRT. Statistical analysis of the model-predicted and experimental gas methane yield for each value of HRT considered shows a standard error of 0.0081 and 0.0114% respectively. Furthermore, the correlation between methane yield and HRT as obtained from derived model and experimental results were evaluated as 0.9716 and 0.9709 respectively. Methane gas yield per unit HRT as obtained from derived model and experiment are 0.0196 and 0.0235 (m3kg-1 VS) days-1 respectively. Deviational analysis indicates that the maximum deviation of the model-predicted methane yield from the corresponding experimental value is less than 16%. It was also found that the validity of the model is rooted on the expression 0.2822 ln γ = α + 0.5717 where both sides of the expression are correspondingly approximately equal.

关 键 词:MODEL METHANE GAS YIELD Biodigestion FRUIT WASTES 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象