Thermal History and Potential of Hydrocarbon Generated from Jurassic to Early Cretaceous Source Rocks in the Malita Graben, Northern Bonaparte Basin, Australia  

Thermal History and Potential of Hydrocarbon Generated from Jurassic to Early Cretaceous Source Rocks in the Malita Graben, Northern Bonaparte Basin, Australia

在线阅读下载全文

作  者:Rakotondravoavy Jules Ye Jia Ren Cao Qiang 

机构地区:[1]Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, MOE, Wuhan, China [2]Department of Earth Science and Environment, Faculty of Science, University of Mahajanga, Mahajanga, Madagascar

出  处:《International Journal of Geosciences》2015年第8期894-916,共23页地球科学国际期刊(英文)

摘  要:The Malita Graben is located in the northern Bonaparte Basin, between the Sahul Platform to the northwest and the Petrel Sub-basin and Darwin Shelf to the south. The wells Beluga 1, Heron 1, Evans Shoal 1, Evans Shoal 2 and Seismic Line N11805 are selected to determine the thermal history and potential of hydrocarbon generated from the Plover, Elang, Frigate Shale (Cleia and Flamingo), and Echuca Shoals formations source rocks. The modeling was performed by using Basin Mod 1-D and 2-D techniques. The model results show that the geothermal gradients range from 3.05 to 4.05°C/100 m with an average of 3.75°C/100 m and present day heat flow values from 46.23 to 61.99 mW/m2 with an average of 56.29 mW/m2. The highest geothermal gradient and present-day heat flow values occurred on a terrace north of the Malita Graben. These most likely indicate that hot fluids are currently variably migrating into this structure. The lower geothermal gradient and heat flow values have been modeled in the southeast sites in the well Beluga 1. The northern Bonaparte Basin experienced several deformation phases including lithospheric thinning;hence, heat flow is expected to vary over the geological history of the basin. The higher paleo-heat flow values changing from 83.54 to 112.01 mW/m2 with an average of 101.71 mW/m2 during Jurassic rift event (syn-rift) were sufficient for source rocks maturation and hydrocarbon generation during Cretaceous post-breakup sequence (post-rift) in the study area. The Tuatara (Upper Frigate Shale) Formation source rock with type II & III kerogen dominantly showing mixed oil- and gas-prone, and Plover Formation with type III and gas prone have never reached the peak mature oil window in the well Beluga 1. This area indicates that the maturity of source rocks is low and considered to be from poor-to-good organic richness with poor-to-fair potential for hydrocarbons generation. The post mature Cleia (Lower Frigate Shale) and Echuca Shoals formations source rocks in the well Evans Shoal 1 and an early maturThe Malita Graben is located in the northern Bonaparte Basin, between the Sahul Platform to the northwest and the Petrel Sub-basin and Darwin Shelf to the south. The wells Beluga 1, Heron 1, Evans Shoal 1, Evans Shoal 2 and Seismic Line N11805 are selected to determine the thermal history and potential of hydrocarbon generated from the Plover, Elang, Frigate Shale (Cleia and Flamingo), and Echuca Shoals formations source rocks. The modeling was performed by using Basin Mod 1-D and 2-D techniques. The model results show that the geothermal gradients range from 3.05 to 4.05°C/100 m with an average of 3.75°C/100 m and present day heat flow values from 46.23 to 61.99 mW/m2 with an average of 56.29 mW/m2. The highest geothermal gradient and present-day heat flow values occurred on a terrace north of the Malita Graben. These most likely indicate that hot fluids are currently variably migrating into this structure. The lower geothermal gradient and heat flow values have been modeled in the southeast sites in the well Beluga 1. The northern Bonaparte Basin experienced several deformation phases including lithospheric thinning;hence, heat flow is expected to vary over the geological history of the basin. The higher paleo-heat flow values changing from 83.54 to 112.01 mW/m2 with an average of 101.71 mW/m2 during Jurassic rift event (syn-rift) were sufficient for source rocks maturation and hydrocarbon generation during Cretaceous post-breakup sequence (post-rift) in the study area. The Tuatara (Upper Frigate Shale) Formation source rock with type II & III kerogen dominantly showing mixed oil- and gas-prone, and Plover Formation with type III and gas prone have never reached the peak mature oil window in the well Beluga 1. This area indicates that the maturity of source rocks is low and considered to be from poor-to-good organic richness with poor-to-fair potential for hydrocarbons generation. The post mature Cleia (Lower Frigate Shale) and Echuca Shoals formations source rocks in the well Evans Shoal 1 and an early matur

关 键 词:Malita GRABEN NORTHERN Bonaparte BASIN POTENTIAL Generating HYDROCARBON Thermal History 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象