机构地区:[1]Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, Beijing, China [2]Industry Information Center, China United Network Communications Corporation Qingdao Branch, Qingdao, China
出 处:《International Journal of Communications, Network and System Sciences》2017年第5期311-323,共13页通讯、网络与系统学国际期刊(英文)
摘 要:Different from general cognitive wireless networks, there is no centralized scheduling and management infrastructure among heterogeneous cognitive networks. Multiple cells may operate in the same vicinity resulting in unfair spectrum occupation time (when the cells belong to different industries) and degraded performance of the cellular networks. A distributed self-coexistence mechanism is necessary. In this paper, we take the self-coexistence of multi users in heterogeneous scenarios as the problem of spectrum allocation in non-cooperative mode. Hence we propose Fair Self-Coexistence Strategy (FSCS). In this strategy, not only the fairness of occupation time is considered, but also different competitive priority metric based on Quality of Service (QoS) is adopted. Each cognitive cell independently completes the spectrum allocation process, by use of sensing techniques and perceptual information about neighboring network cells. The simulation experiment results show that our spectrum allocation strategy guarantees the fairness among the heterogeneous secondary networks. And in the resource scarce environment, our strategy can effectively achieve the differentiation competition results.Different from general cognitive wireless networks, there is no centralized scheduling and management infrastructure among heterogeneous cognitive networks. Multiple cells may operate in the same vicinity resulting in unfair spectrum occupation time (when the cells belong to different industries) and degraded performance of the cellular networks. A distributed self-coexistence mechanism is necessary. In this paper, we take the self-coexistence of multi users in heterogeneous scenarios as the problem of spectrum allocation in non-cooperative mode. Hence we propose Fair Self-Coexistence Strategy (FSCS). In this strategy, not only the fairness of occupation time is considered, but also different competitive priority metric based on Quality of Service (QoS) is adopted. Each cognitive cell independently completes the spectrum allocation process, by use of sensing techniques and perceptual information about neighboring network cells. The simulation experiment results show that our spectrum allocation strategy guarantees the fairness among the heterogeneous secondary networks. And in the resource scarce environment, our strategy can effectively achieve the differentiation competition results.
关 键 词:HETEROGENEOUS COGNITIVE Networks Self-Coexisting FAIRNESS Game Theory
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...