FAIRNESS

作品数:251被引量:233H指数:7
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:吴志彪夏玮玮鲍楠沈连丰曹毅宁更多>>
相关机构:清华大学东南大学华中科技大学北京师范大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划国家教育部博士点基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Counterfactual Learning on Graphs:A Survey
《Machine Intelligence Research》2025年第1期17-59,共43页Zhimeng Guo Zongyu Wu Teng Xiao Charu Aggarwal Hui Liu Suhang Wang 
supported by,or in part by the National Science Foundation(NSF),USA(No.IIS-1909702);Army Research Office(ARO),USA(No.W911NF-21-10198),and Cisco Faculty Research Award.
Graph-structured data are pervasive in the real-world such as social networks,molecular graphs and transaction networks.Graph neural networks(GNNs)have achieved great success in representation learning on graphs,facil...
关键词:Counterfactual learning graph-structured data graph neural networks FAIRNESS explainability 
Quantifying Bytes:Understanding Practical Value of Data Assets in Federated Learning
《Tsinghua Science and Technology》2025年第1期135-147,共13页Minghao Yao Saiyu Qi Zhen Tian Qian Li Yong Han Haihong Li Yong Qi 
supported by the Natural Science Basic Research Program of Shaanxi Program(No.2024JC-JCQN-67),the Fundamental Research Funds for the Central Universities(Nos.xzy012022083 and xxj032022012);the Shaanxi Province QinChuangYuan“Scientist+Engineer”Team Building Project(No.2022KXJ-054);the National Key Research and Development Program of China(No.2023YFB2703800);the National Natural Science Foundation of China(No.62206217);the China Postdoctoral Science Foundation(Nos.2022M722530 and 2023T160512).
The data asset is emerging as a crucial component in both industrial and commercial applications.Mining valuable knowledge from the data benefits decision-making and business.However,the usage of data assets raises te...
关键词:Federated Learning(FL) blockchain FAIRNESS 
Fairness-guided federated training for generalization and personalization in cross-silo federated learning
《Frontiers of Information Technology & Electronic Engineering》2025年第1期42-61,共20页Ruipeng ZHANG Ziqing FAN Jiangchao YAO Ya ZHANG Yanfeng WANG 
Project supported by the National Key R&D Program of China(No.2022ZD0160702);the STCSM(Nos.22511106101,18DZ2270700,and 21DZ1100-100);the 111 Plan(No.BP0719010);the State Key Laboratory of UHD Video and Audio Production and Presentation。
Cross-silo federated learning(FL),which benefits from relatively abundant data and rich computing power,is drawing increasing focus due to the significant transformations that foundation models(FMs)are instigating in ...
关键词:Generalized and personalized federated learning Performance distribution fairness Domain shift 
Blockchain-based crowdsourcing for human intelligence tasks with dual fairness
《Blockchain(Research and Applications)》2024年第4期1-13,共13页Yihuai Liang Yan Li Byeong-Seok Shin 
supported by grants from the National Research Foundation of Korea(NRF),funded by the Korean government(Grant Nos.NRF-2022R1A2B5B01001553 and NRF-2022R1A4A1033549);provided by an Institute of Information&Communications Technology Planning&Evaluation(IITP)grant,also funded by the Korean government(MSIT)under Grant No.RS-2022-00155915,for the project titled“Artificial Intelligence Convergence Innovation Hu-man Resources Development(Inha University).”
Human intelligence tasks(HITs),such as labeling images for machine learning,are widely utilized for crowdsourcing human knowledge.Centralized crowdsourcing platforms face challenges of a single point of failure and a ...
关键词:Crowdsourcing Dual fairness Blockchain Human intelligence task Truth discovery 
A Comprehensive Survey on Trustworthy Graph Neural Networks:Privacy,Robustness,Fairness,and Explainability
《Machine Intelligence Research》2024年第6期1011-1061,共51页Enyan Dai Tianxiang Zhao Huaisheng Zhu Junjie Xu Zhimeng Guo Hui Liu Jiliang Tang Suhang Wang 
National Science Foundation(NSF),USA(No.IIS-1909702);Army Research Office(ARO),USA(No.W911NF21-1-0198);Department of Homeland Security(DNS)CINA,USA(No.E205949D).
Graph neural networks(GNNs)have made rapid developments in the recent years.Due to their great ability in modeling graph-structured data,GNNs are vastly used in various applications,including high-stakes scenarios suc...
关键词:Graph neural networks(GNNs) TRUSTWORTHY PRIVACY ROBUSTNESS FAIRNESS explainability 
The Neurocomputational Mechanism Underlying Decision-Making on Unfairness to Self and Others
《Neuroscience Bulletin》2024年第10期1471-1488,共18页Lanxin Luo Han Xu Xia Tian Yue Zhao Ruoling Xiong Huafeng Dong Xiaoqing Li Yuhe Wang Yue-Jia Luo Chunliang Feng 
supported by the National Natural Science Foundation of China (32271126 and 31920103009);the Natural Science Foundation of Guangdong Province (2021A1515010746);the Major Project of National Social Science Foundation (20&ZD153);Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2023SHIBS0003).
Fairness is a fundamental value in human societies,with individuals concerned about unfairness both to themselves and to others.Nevertheless,an enduring debate focuses on whether self-unfairness and other-unfairness e...
关键词:FAIRNESS Three-person ultimatum game fMRI.Computational model Multivoxel pattern analysis 
Ada-FFL:Adaptive computing fairness federated learning
《CAAI Transactions on Intelligence Technology》2024年第3期573-584,共12页Yue Cong Jing Qiu Kun Zhang Zhongyang Fang Chengliang Gao Shen Su Zhihong Tian 
National Natural Science Foundation of China,Grant/Award Number:62272114;Joint Research Fund of Guangzhou and University,Grant/Award Number:202201020380;Guangdong Higher Education Innovation Group,Grant/Award Number:2020KCXTD007;Pearl River Scholars Funding Program of Guangdong Universities(2019);National Key R&D Program of China,Grant/Award Number:2022ZD0119602;Major Key Project of PCL,Grant/Award Number:PCL2022A03。
As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improveme...
关键词:adaptive fariness aggregation FAIRNESS federated learning non-IID 
Sociology of Education in China in the New Era:Review and Prospects(2012-2022)被引量:1
《ECNU Review of Education》2024年第3期655-676,共22页Tianjun Cheng Xiaoxuan Li 
Purpose:This study provides an overview of the changes and developments of the sociology of education in China as it enters the new era as well as its future outlook.Design/Approach/Methods:This study combed and analy...
关键词:Educational fairness educational reforms rural education sociology of education in China the newera 
Fairness in machine learning:definition,testing,debugging,and application
《Science China(Information Sciences)》2024年第9期37-57,共21页Xuanqi GAO Chao SHEN Weipeng JIANG Chenhao LIN Qian LI Qian WANG Qi LI Xiaohong GUAN 
partially supported by National Key R&D Program of China(Grant No.2020AAA0107702);National Natural Science Foundation of China(Grant Nos.U21B2018,62161160337,62132011,62206217,62376210,62006181,U20B2049,U20A20177);Shaanxi Province Key Industry Innovation Program(Grant Nos.2023-ZDLGY-38,2021ZDLGY01-02);China Postdoctoral Science Foundation(Grant Nos.2022M722530,2023T160512);Fundamental Research Funds for the Central Universities(Grant Nos.xtr052023004,xtr022019002,xzy012022082)。
In recent years,artificial intelligence technology has been widely used in many fields,such as computer vision,natural language processing and autonomous driving.Machine learning algorithms,as the core technique of AI...
关键词:artificial intelligence security machine learning security machine learning fairness model testing model debugging 
Media Watch
《ChinAfrica》2024年第6期7-7,共1页
UPGRADING GAOKAO Sanlian Lifeweek 29 April With April coming to a close,high school seniors across China have o"cially entered the homestretch of their race towards the gaokao,a standardised national college entrance ...
关键词:COLLEGE continuously FAIRNESS 
检索报告 对象比较 聚类工具 使用帮助 返回顶部