TRUSTWORTHY

作品数:49被引量:71H指数:5
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:李超李必信吴晓娜更多>>
相关机构:东南大学更多>>
相关期刊:《The Journal of China Universities of Posts and Telecommunications》《Digital Communications and Networks》《Frontiers of Computer Science》《Wuhan University Journal of Natural Sciences》更多>>
相关基金:国家自然科学基金国家教育部博士点基金中国博士后科学基金国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
AIDCT:An AI service development and composition tool for constructing trustworthy intelligent systems
《High-Confidence Computing》2024年第4期82-90,共9页Wei Jiang Luo Xu Zichao Zhang Xiang Lei 
The growing prevalence of AI services on cloud platforms is driving the demand for technologies and tools which enable the integration of multiple AI services to handle intricate tasks.Traditional methods of evaluatin...
关键词:AI service Trustworthy intelligent system Practical applications 
A Comprehensive Survey on Trustworthy Graph Neural Networks:Privacy,Robustness,Fairness,and Explainability
《Machine Intelligence Research》2024年第6期1011-1061,共51页Enyan Dai Tianxiang Zhao Huaisheng Zhu Junjie Xu Zhimeng Guo Hui Liu Jiliang Tang Suhang Wang 
National Science Foundation(NSF),USA(No.IIS-1909702);Army Research Office(ARO),USA(No.W911NF21-1-0198);Department of Homeland Security(DNS)CINA,USA(No.E205949D).
Graph neural networks(GNNs)have made rapid developments in the recent years.Due to their great ability in modeling graph-structured data,GNNs are vastly used in various applications,including high-stakes scenarios suc...
关键词:Graph neural networks(GNNs) TRUSTWORTHY PRIVACY ROBUSTNESS FAIRNESS explainability 
Assessor Feedback Mechanism for Machine Learning Model
《Computers, Materials & Continua》2024年第12期4707-4726,共20页Musulmon Lolaev Anand Paul Jeonghong Kim 
supported by BK21 Four Project,AI-Driven Convergence Software Education Research Program 41999902143942;also supported by National Research Foundation of Korea 2020R1A2C1012196.
Evaluating artificial intelligence(AI)systems is crucial for their successful deployment and safe operation in real-world applications.The assessor meta-learning model has been recently introduced to assess AI system ...
关键词:Artificial Intelligence assessor model EVALUATION META-LEARNING TRUSTWORTHY explainable AI 
Trustworthy DNN partition for blockchain-enabled digital twin in wireless IIoT networks
《Science China(Information Sciences)》2024年第11期369-370,共2页Xiumei DENG Jun LI Long SHI Kang WEI Ming DING Yumeng SHAO Wen CHEN Shi JIN 
supported in part by Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry)(Grant Nos.BE2023022,BE2023022-2);in part by National Natural Science Foundation of China(Grant No.62371239);in part by Jiangsu Specially-Appointed Professor Program 2021。
The integration of artificial intelligence(AI)and digital twin(DT)technology has revolutionized the industrial Internet of Things(IIoT),enabling advanced automation and intelligent manufacturing[1].Through sophisticat...
关键词:PARTITION NETWORKS enabling 
Trustworthy semi-supervised anomaly detection for online‐tooffline logistics business in merchant identification
《CAAI Transactions on Intelligence Technology》2024年第3期544-556,共13页Yong Li Shuhang Wang Shijie Xu Jiao Yin 
Major Project of Fundamental Research on Frontier Leading Technology of Jiangsu Province,Grant/Award Number:BK20222006;Fundamental Research Funds for the Central Universities,Grant/Award Number:CUPL 20ZFG79001。
The rise of online-to-offline(O2O)e-commerce business has brought tremendous opportunities to the logistics industry.In the online-to-offline logistics business,it is essential to detect anomaly merchants with fraudul...
关键词:artificial intelligence techniques data fusion deep learning 
Towards trustworthy multi-modal motion prediction:Holistic evaluation and interpretability of outputs
《CAAI Transactions on Intelligence Technology》2024年第3期557-572,共16页Sandra Carrasco Limeros Sylwia Majchrowska Joakim Johnander Christoffer Petersson MiguelÁngel Sotelo David Fernández Llorca 
European Commission,Joint Research Center,Grant/Award Number:HUMAINT;Ministerio de Ciencia e Innovación,Grant/Award Number:PID2020‐114924RB‐I00;Comunidad de Madrid,Grant/Award Number:S2018/EMT‐4362 SEGVAUTO 4.0‐CM。
Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of po...
关键词:autonomous vehicles EVALUATION INTERPRETABILITY multi-modal motion prediction ROBUSTNESS trustworthy AI 
Uncertainty-Aware Deep Learning: A Promising Tool for Trustworthy Fault Diagnosis
《IEEE/CAA Journal of Automatica Sinica》2024年第6期1317-1330,共14页Jiaxin Ren Jingcheng Wen Zhibin Zhao Ruqiang Yan Xuefeng Chen Asoke K.Nandi 
supported in part by the National Natural Science Foundation of China(52105116);Science Center for gas turbine project(P2022-DC-I-003-001);the Royal Society award(IEC\NSFC\223294)to Professor Asoke K.Nandi.
Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack...
关键词:Out-of-distribution detection traceability analysis trustworthy fault diagnosis uncertainty quantification. 
CrossLinkNet: An Explainable and Trustworthy AI Framework for Whole-Slide Images Segmentation
《Computers, Materials & Continua》2024年第6期4703-4724,共22页Peng Xiao Qi Zhong Jingxue Chen Dongyuan Wu Zhen Qin Erqiang Zhou 
supported by the National Natural Science Foundation of China(Grant Numbers:62372083,62072074,62076054,62027827,62002047);the Sichuan Provincial Science and Technology Innovation Platform and Talent Program(Grant Number:2022JDJQ0039);the Sichuan Provincial Science and Technology Support Program(Grant Numbers:2022YFQ0045,2022YFS0220,2021YFG0131,2023YFS0020,2023YFS0197,2023YFG0148);the CCF-Baidu Open Fund(Grant Number:202312).
In the intelligent medical diagnosis area,Artificial Intelligence(AI)’s trustworthiness,reliability,and interpretability are critical,especially in cancer diagnosis.Traditional neural networks,while excellent at proc...
关键词:Explainable AI security TRUSTWORTHY CrossLinkNet whole slide images 
Trustworthy Artificial Intelligence for Social Governance
《Social Sciences in China》2024年第2期135-151,共17页Zang Leizhen Song Xiongwei Yan Changwu 
As AI technology continues to evolve,it plays an increasingly significant role in everyday life and social governance.However,the frequent occurrence of issues such as algorithmic bias,privacy breaches,and data leaks ...
关键词:trustworthy artificial intelligence(AI) social governance ethical concern technology development public sector 
Toward Trustworthy Decision-Making for Autonomous Vehicles:A Robust Reinforcement Learning Approach with Safety Guarantees
《Engineering》2024年第2期77-89,共13页Xiangkun He Wenhui Huang Chen Lv 
supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological University;the Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156);the MTC Individual Research Grant(M22K2c0079);the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science);the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...
关键词:Autonomous vehicle DECISION-MAKING Reinforcement learning Adversarial attack Safety guarantee 
检索报告 对象比较 聚类工具 使用帮助 返回顶部