检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:William Deitrick Zachary Miller Benjamin Valyou Brian Dickinson Timothy Munson Wei Hu
机构地区:[1]Department of Computer Science, Houghton College, Houghton, USA
出 处:《Journal of Intelligent Learning Systems and Applications》2012年第3期169-175,共7页智能学习系统与应用(英文)
摘 要:With the rapid growth of the Internet in recent years, the ability to analyze and identify its users has become increasingly important. Authorship analysis provides a means to glean information about the author of a document originating from the internet or elsewhere, including but not limited to the author’s gender. There are well-known linguistic differences between the writing of men and women, and these differences can be effectively used to predict the gender of a document’s author. Capitalizing on these linguistic nuances, this study uses a set of stylometric features and a set of word count features to facilitate automatic gender discrimination on emails from the popular Enron email dataset. These features are used in conjunction with the Modified Balanced Winnow Neural Network proposed by Carvalho and Cohen, an improvement on the original Balanced Winnow created by Littlestone. Experiments with the Modified Balanced Winnow show that it is effectively able to discriminate gender using both stylometric and word count features, with the word count features providing superior results.With the rapid growth of the Internet in recent years, the ability to analyze and identify its users has become increasingly important. Authorship analysis provides a means to glean information about the author of a document originating from the internet or elsewhere, including but not limited to the author’s gender. There are well-known linguistic differences between the writing of men and women, and these differences can be effectively used to predict the gender of a document’s author. Capitalizing on these linguistic nuances, this study uses a set of stylometric features and a set of word count features to facilitate automatic gender discrimination on emails from the popular Enron email dataset. These features are used in conjunction with the Modified Balanced Winnow Neural Network proposed by Carvalho and Cohen, an improvement on the original Balanced Winnow created by Littlestone. Experiments with the Modified Balanced Winnow show that it is effectively able to discriminate gender using both stylometric and word count features, with the word count features providing superior results.
关 键 词:1-Gram Word Counts Balanced WINNOW ENRON EMAIL GENDER PREDICTION Neural Network STREAM Mining Stylometric Features
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.217