国家自然科学基金(10871088)

作品数:3被引量:5H指数:2
导出分析报告
相关期刊:《Science China Mathematics》《Acta Mathematica Sinica,English Series》更多>>
相关主题:RANKKERNELSTAMEPUREKERNEL更多>>
相关领域:理学更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-3
视图:
排序:
Tame Kernels of Pure Cubic Fields被引量:2
《Acta Mathematica Sinica,English Series》2012年第4期771-780,共10页Xiao Yun CHENG 
Supported by National Natural Science Foundation of China(Grant Nos.10971091 and 10871088);Specialized Research Fund for the Doctoral Program of Higher Education(Grant Nos.200802840003 and 200802841042)
In this paper, we study the p-rank of the tame kernels of pure cubic fields. In particular, we prove that for a fixed positive integer m, there exist infinitely many pure cubic fields whose 3-rank of the tame kernel e...
关键词:Tame kernel pure cubic fields class group 3-rank 
On the 3-rank of tame kernels of certain pure cubic number fields被引量:2
《Science China Mathematics》2010年第9期2381-2394,共14页LI YuanYuan & QIN HouRong Department of Mathematics,Nanjing University,Nanjing 210093,China 
supported by National Natural Science Foundation of China (Grant No.10871088);Speialized Research Fund for the Doctoral Program of Higher Education (Grant No.200802840003);the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(Grant No.708044)
In this paper,we present some explicit formulas for the 3-rank of the tame kernels of certain pure cubic number fields,and give the density results concerning the 3-rank of the tame kernels.Numerical examples are give...
关键词:the 3-rank of the TAME KERNELS PURE CUBIC fields density 
Rank of K_2 of elliptic curves被引量:2
《Science China Mathematics》2009年第10期2107-2120,共14页JI QingZhong & QIN HouRong Department of Mathematics, Nanjing University, Nanjing 210093, China 
supported by National Natural Science Foundation of China (Grant Nos. 10571080, 10871088);Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200802840003);the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China(No.708044)
We prove that (i) rank(K2(E)) 1 for all elliptic curves E defined over Q with a rational torsion point of exact order N 4; (ii) rank(K2(E)) 1 for all but at most one R-isomorphism class of elliptic curves E defined ov...
关键词:ELLIPTIC CURVE REGULATOR MAP  RON model 
检索报告 对象比较 聚类工具 使用帮助 返回顶部