《Journal on Artificial Intelligence》

作品数:70被引量:59H指数:4
导出分析报告
《Journal on Artificial Intelligence》
主办单位:Tech Science Press
最新期次:2023年1期更多>>
发文主题:BASED_ONMACHINE_LEARNINGNEURALCLASSIFICATIONRESEARCH更多>>
发文领域:自动化与计算机技术理学语言文字经济管理更多>>
发文基金:国家自然科学基金北京市自然科学基金国家社会科学基金天津市自然科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
AI Safety Approach for Minimizing Collisions in Autonomous Navigation被引量:1
《Journal on Artificial Intelligence》2023年第1期1-14,共14页Abdulghani M.Abdulghani Mokhles M.Abdulghani Wilbur L.Walters Khalid H.Abed 
the United States Air Force Office of Scientific Research(AFOSR)contract FA9550-22-1-0268 awarded to KHA,https://www.afrl.af.mil/AFOSR/.The contract is entitled:“Investigating Improving Safety of Autonomous Exploring Intelligent Agents with Human-in-the-Loop Reinforcement Learning,”and in part by Jackson State University.
Autonomous agents can explore the environment around them when equipped with advanced hardware and software systems that help intelligent agents minimize collisions.These systems are developed under the term Artificia...
关键词:Artificial intelligence AI safety autonomous robots unmanned systems Unity simulations reinforcement learning RL machine learning ML-Agents human-machine teaming 
Multiple Data Augmentation Strategy for Enhancing the Performance of YOLOv7 Object Detection Algorithm被引量:2
《Journal on Artificial Intelligence》2023年第1期15-30,共16页Abdulghani M.Abdulghani Mokhles M.Abdulghani Wilbur L.Walters Khalid H.Abed 
the United States Air Force Office of Scientific Research(AFOSR)contract FA9550-22-1-0268 awarded to KHA,https://www.afrl.af.mil/AFOSR/.The contract is entitled:“Investigating Improving Safety of Autonomous Exploring Intelligent Agents with Human-in-the-Loop Reinforcement Learning,”and in part by Jackson State University.
The object detection technique depends on various methods for duplicating the dataset without adding more images.Data augmentation is a popularmethod that assists deep neural networks in achieving better generalizatio...
关键词:Artificial intelligence object detection YOLOv7 data augmentation data brightness data darkness data blur data noise convolutional neural network 
Explainable AI and Interpretable Model for Insurance Premium Prediction
《Journal on Artificial Intelligence》2023年第1期31-42,共12页Umar Abdulkadir Isa Anil Fernando 
Traditional machine learning metrics(TMLMs)are quite useful for the current research work precision,recall,accuracy,MSE and RMSE.Not enough for a practitioner to be confident about the performance and dependability of...
关键词:LIME SHAP INNOVATIVE explainable AI random forest machine learning insurance premium 
Study of Intelligent Approaches to Identify Impact of Environmental Temperature on Ultrasonic GWs Based SHM:A Review
《Journal on Artificial Intelligence》2023年第1期43-56,共14页Saqlain Abbas Zulkarnain Abbas Xiaotong Tu Yanping Zhu 
Structural health monitoring(SHM)is considered an effective approach to analyze the efficient working of several mechanical components.For this purpose,ultrasonic guided waves can cover long-distance and assess large ...
关键词:Structural health monitoring ultrasonic guided waves environmental and operating conditions thermal sensitivity 
Embracing the Future:AI and ML Transforming Urban Environments in Smart Cities被引量:1
《Journal on Artificial Intelligence》2023年第1期57-73,共17页Gagan Deep Jyoti Verma 
This research explores the increasing importance of Artificial Intelligence(AI)and Machine Learning(ML)with relation to smart cities.It discusses the AI and ML’s ability to revolutionize various aspects of urban envi...
关键词:Artificial Intelligence(AI) Machine Learning(ML) smart city data analytics DECISION-MAKING predictive analytics optimization 
K-Hyperparameter Tuning in High-Dimensional Space Clustering:Solving Smooth Elbow Challenges Using an Ensemble Based Technique of a Self-Adapting Autoencoder and Internal Validation Indexes
《Journal on Artificial Intelligence》2023年第1期75-112,共38页Rufus Gikera Jonathan Mwaura Elizaphan Muuro Shadrack Mambo 
k-means is a popular clustering algorithm because of its simplicity and scalability to handle large datasets.However,one of its setbacks is the challenge of identifying the correct k-hyperparameter value.Tuning this v...
关键词:k-hyperparameter tuning HIGH-DIMENSIONAL smooth elbow 
Automatic Driving Operation Strategy of Urban Rail Train Based on Improved DQN Algorithm
《Journal on Artificial Intelligence》2023年第1期113-129,共17页Tian Lu Bohong Liu 
To realize a better automatic train driving operation control strategy for urban rail trains,an automatic train driving method with improved DQN algorithm(classical deep reinforcement learning algorithm)is proposed as...
关键词:DQN algorithm automatic train operation(ATO) operation strategy urban rail train 
Research on the Application of Reinforcement Learning Model in Vocational Education System
《Journal on Artificial Intelligence》2023年第1期131-143,共13页Fei Xue 
Vocational education can effectively improve the vocational skills of employees,improve people’s traditional concept of vocational education,and focus on the training of vocational skills for students by using new ed...
关键词:Vocational education intensive learning key abilities 
Phishing Website URL’s Detection Using NLP and Machine Learning Techniques
《Journal on Artificial Intelligence》2023年第1期145-162,共18页Dinesh Kalla Sivaraju Kuraku 
Phishing websites present a severe cybersecurity risk since they can lead to financial losses,data breaches,and user privacy violations.This study uses machine learning approaches to solve the problem of phishing webs...
关键词:CYBERSECURITY artificial intelligence machine learning NLP phishing detection spam detection phinshing website URLs 
An Example of a Supporting Combination by Using GA to Evolve More Advanced and Deeper CNN Architecture
《Journal on Artificial Intelligence》2023年第1期163-180,共18页Bah Mamoudou 
It has become an annual tradition for Convolutional Neural Networks(CNNs)to continuously improve their performance in image classification and other applications.These advancements are often attributed to the adoption...
关键词:Machine learning deep learning CNN state-of-art DNN GA 
检索报告 对象比较 聚类工具 使用帮助 返回顶部