CONNECTIONIST

作品数:12被引量:26H指数:2
导出分析报告
相关作者:孙维祥王薇俞立军许满武张莉更多>>
相关机构:南京大学浙江师范大学西南大学广东外语外贸大学更多>>
相关期刊:《Journal of Beijing Institute of Technology》《计算机应用研究》《Computer Systems Science & Engineering》《China Communications》更多>>
相关基金:国家自然科学基金国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
A Novel Re-weighted CTC Loss for Data Imbalance in Speech Keyword Spotting被引量:1
《Chinese Journal of Electronics》2023年第3期465-473,共9页LAN Xiaotian HE Qianhua YAN Haikang LI Yanxiong 
supported by the National Natural Science Foundation of China(61571192);Guangdong Basic and Applied Basic Research Foundation(2021A1515011454).
Speech keyword spotting system is a critical component of human-computer interfaces.And connectionist temporal classifier(CTC)has been proven to be an effective tool for that task.However,the standard training process...
关键词:Speech keyword spotting Connectionist temporal classifier Data imbalance Sample importance re-weighting 
Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network被引量:2
《Computer Modeling in Engineering & Sciences》2023年第3期1653-1670,共18页Qi Guo Shujun Zhang Hui Li 
supported by the Key Research&Development Plan Project of Shandong Province,China(No.2017GGX10127).
Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora...
关键词:Continuous sign language recognition graph attention network bidirectional long short-term memory connectionist temporal classification 
An Efficient Hybrid Model for Arabic Text Recognition
《Computers, Materials & Continua》2023年第2期2871-2888,共18页Hicham Lamtougui Hicham El Moubtahij Hassan Fouadi Khalid Satori 
In recent years,Deep Learning models have become indispensable in several fields such as computer vision,automatic object recognition,and automatic natural language processing.The implementation of a robust and effici...
关键词:Deep learning arabic handwritten text recognition convolutional neural network(CNN) bidirectional long-term memory(BLSTM) connectionist temporal classification(CTC) 
Network Traffic Prediction Using Radial Kernelized-Tversky Indexes-Based Multilayer Classifier
《Computer Systems Science & Engineering》2022年第3期851-863,共13页M.Govindarajan V.Chandrasekaran S.Anitha 
Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time.With the use of mobile devices,communication services generate numerous data for every moment....
关键词:Cellular network traffic prediction connectionist Tversky multilayer deep structure learning attribute selection classification radial kernelized long short-term memory 
HLR-Net: A Hybrid Lip-Reading Model Based on Deep Convolutional Neural Networks被引量:2
《Computers, Materials & Continua》2021年第8期1531-1549,共19页Amany M.Sarhan Nada M.Elshennawy Dina M.Ibrahim 
Lip reading is typically regarded as visually interpreting the speaker’s lip movements during the speaking.This is a task of decoding the text from the speaker’s mouth movement.This paper proposes a lip-reading mode...
关键词:LIP-READING visual speech recognition deep neural network connectionist temporal classification 
Joint CTC-Attention End-to-End Speech Recognition with a Triangle Recurrent Neural Net work Encoder被引量:2
《Journal of Shanghai Jiaotong university(Science)》2020年第1期70-75,共6页ZHU Tao CHENG Chunling 
Traditional speech recognition model based on deep neural network(DNN)and hidden Markov model(HMM)is a complex and multi-module system.In other words,optimization goals may differ between modules in traditional model....
关键词:END-TO-END CONNECTIONIST temporal classification(CTC) att ent ion speech recognition 
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus被引量:9
《China Communications》2017年第9期23-31,共9页Donghyun Lee Minkyu Lim Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 
supported by the Ministry of Trade,Industry & Energy(MOTIE,Korea) under Industrial Technology Innovation Program (No.10063424,'development of distant speech recognition and multi-task dialog processing technologies for in-door conversational robots')
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force...
关键词:acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus LONG SHORT-TERM memory recurrentneural network 
Recent Progresses in Deep Learning Based Acoustic Models被引量:10
《IEEE/CAA Journal of Automatica Sinica》2017年第3期396-409,共14页Dong Yu Jinyu Li 
In this paper,we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques.We first discuss models such as recurrent neural networks(RNNs) a...
关键词:Attention model convolutional neural network(CNN) connectionist temporal classification(CTC) deep learning(DL) long short-term memory(LSTM) permutation invariant training speech adaptation speech processing speech recognition speech separation 
Brain as an Emergent Finite Automaton: A Theory and Three Theorems
《International Journal of Intelligence Science》2015年第2期112-131,共20页Juyang Weng 
This paper models a biological brain—excluding motivation (e.g., emotions)—as a Finite Automaton in Developmental Network (FA-in-DN), but such an FA emerges incrementally in DN. In artificial intelligence (AI), ther...
关键词:BRAIN Mind CONNECTIONIST AUTOMATA THEORY Finite AUTOMATON Symbolic Artificial Intelligence 
Intrusion Detection Approach Using Connectionist Expert System
《Journal of Beijing Institute of Technology》2005年第4期467-470,共4页马锐 刘玉树 杜彦辉 
SponsoredbytheMinisterialLevelFoundation(9181201)
In order to improve the detection efficiency of rule-based expert systems, an intrusion detection approach using connectionist expert system is proposed. The approach converts the AND/OR nodes into the corresponding n...
关键词:intrusion detection neural networks expert system 
检索报告 对象比较 聚类工具 使用帮助 返回顶部