MAMMOGRAM

作品数:38被引量:35H指数:3
导出分析报告
相关领域:医药卫生更多>>
相关期刊:《Journal of Modern Physics》《Computer Systems Science & Engineering》《Journal of Computer Science & Technology》《Circuits and Systems》更多>>
相关基金:国家自然科学基金河南省自然科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Mammogram Classification with HanmanNets Using Hanman Transform Classifier
《Journal of Modern Physics》2024年第7期1045-1067,共23页Jyoti Dabass Madasu Hanmandlu Rekha Vig Shantaram Vasikarla 
Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep infor...
关键词:MAMMOGRAMS ResNet 18 Hanman Transform Classifier ABNORMALITY DIAGNOSIS VGG-16 AlexNet GoogleNet HanmanNets 
A Breast Density Classification System for Mammography Considering Reliability Issues in Deep Learning
《Open Journal of Medical Imaging》2023年第3期63-83,共21页Eri Matsuyama Megumi Takehara Noriyuki Takahashi Haruyuki Watanabe 
In a convolutional neural network (CNN) classification model for diagnosing medical images, transparency and interpretability of the model’s behavior are crucial in addition to high classification accuracy, and it is...
关键词:Explainable AI t-SNE ENTROPY Wavelet Transform MAMMOGRAM 
Classification of Multi-view Digital Mammogram Images Using SMO-WkNN
《Computer Systems Science & Engineering》2023年第8期1741-1758,共18页P.Malathi G.Charlyn Pushpa Latha 
Breast cancer(BCa)is a leading cause of death in the female population across the globe.Approximately 2.3 million new BCa cases are recorded globally in females,overtaking lung cancer as the most prevalent form of can...
关键词:Breast cancer DDSM CLAHE median filter region growing PHOG AlexNet SMO-WkNN 
Cancer Regions in Mammogram Images Using ANFIS Classifier Based Probability Histogram Segmentation Algorithm
《Intelligent Automation & Soft Computing》2023年第7期707-726,共20页V.Swetha G.Vadivu 
Every year,the number of women affected by breast tumors is increasing worldwide.Hence,detecting and segmenting the cancer regions in mammogram images is important to prevent death in women patients due to breast canc...
关键词:MAMMOGRAM CANCER gaussian filter ridgelet classification 
Micro Calcification Detection in Mammogram Images Using Contiguous Convolutional Neural Network Algorithm
《Computer Systems Science & Engineering》2023年第5期1887-1899,共13页P.Gomathi C.Muniraj P.S.Periasamy 
The mortality rate decreases as the early detection of Breast Cancer(BC)methods are emerging very fast,and when the starting stage of BC is detected,it is curable.The early detection of the disease depends on the imag...
关键词:Contiguous Convolutional Neural Network(CCNN) Gaussian filter Versatile K-Means Clustering(VKC)algorithm mammogram cancer detection 
Simply Fine-Tuned Deep Learning-Based Classification for Breast Cancer with Mammograms
《Computers, Materials & Continua》2022年第12期4677-4693,共17页Vicky Mudeng Jin-woo Jeong Se-woon Choe 
This research was supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)[NRF-2019R1F1A1062397,NRF-2021R1F1A1059665];Brain Korea 21 FOUR Project(Dept.of IT Convergence Engineering,Kumoh National Institute of Technology);This paper was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)[P0017123,The Competency Development Program for Industry Specialist].
A lump growing in the breast may be referred to as a breast mass related to the tumor.However,not all tumors are cancerous or malignant.Breast masses can cause discomfort and pain,depending on the size and texture of ...
关键词:Medical image analysis convolutional neural network MAMMOGRAM breast masses breast cancer 
Efficient Segmentation Approach for Different Medical Image Modalities
《Computers, Materials & Continua》2022年第11期3119-3135,共17页Walid El-Shafai Amira A.Mahmoud El-Sayed M.El-Rabaie Taha E.Taha Osama F.Zahran Adel S.El-Fishawy Naglaa F.Soliman Amel A.Alhussan Fathi E.Abd El-Samie 
Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R66),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
This paper presents a study of the segmentation of medical images.The paper provides a solid introduction to image enhancement along with image segmentation fundamentals.In the first step,the morphological operations ...
关键词:Image segmentation ULTRASONIC MAMMOGRAM CT PET MRI morphological operations FCM active contours 
Breast Mammogram Analysis and Classification Using Deep Convolution Neural Network被引量:1
《Computer Systems Science & Engineering》2022年第10期275-289,共15页V.Ulagamuthalvi G.Kulanthaivel A.Balasundaram Arun Kumar Sivaraman 
One of the fast-growing disease affecting women’s health seriously is breast cancer.It is highly essential to identify and detect breast cancer in the earlier stage.This paper used a novel advanced methodology than m...
关键词:Medical image processing deep learning convolution neural network breast cancer feature extraction classification 
Digital Mammogram Inferencing System Using Intuitionistic Fuzzy Theory
《Computer Systems Science & Engineering》2022年第6期1099-1115,共17页Susmita Mishra M.Prakash 
In the medical field,the detection of breast cancer may be a mysterious task.Physicians must deduce a conclusion from a significantly vague knowledge base.A mammogram can offer early diagnosis at a low cost if the bre...
关键词:MAMMOGRAM intuitionistic fuzzy evidential reasoning trapezoidal fuzzy MALIGNANT BENIGN 
Automated Deep Learning Empowered Breast Cancer Diagnosis UsingBiomedical Mammogram Images被引量:3
《Computers, Materials & Continua》2022年第6期4221-4235,共15页JoséEscorcia-Gutierrez Romany F.Mansour Kelvin Belen Javier Jiménez-Cabas Meglys Pérez Natasha Madera Kevin Velasquez 
Biomedical image processing is a hot research topic which helps to majorly assist the disease diagnostic process.At the same time,breast cancer becomes the deadliest disease among women and can be detected by the use ...
关键词:Breast cancer digital mammograms deep learning wavelet neural network Resnet 34 disease diagnosis 
检索报告 对象比较 聚类工具 使用帮助 返回顶部