MULTI-AGENT_SYSTEMS

作品数:438被引量:882H指数:14
导出分析报告
相关作者:刘德荣尹晓虎王长缨廖备水吕金虎更多>>
相关机构:浙江大学北京理工大学华东师范大学国防科学技术大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划中国博士后科学基金北京市自然科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Diversity-Based Recruitment in Crowdsensing by Combinatorial Multi-Armed Bandits
《Tsinghua Science and Technology》2025年第2期732-747,共16页Abdalaziz Sawwan Jie Wu 
supported in part by NSF(Nos.SaTC 2310298,CNS 2214940,CPS 2128378,CNS 2107014,and CNS 2150152).
Mobile Crowdsensing(MCS)represents a transformative approach to collecting data from the environment as it utilizes the ubiquity and sensory capabilities of mobile devices with human participants.This paradigm enables...
关键词:diverse allocation mobile crowdsensing multi-agent systems multi-armed bandits online learning worker recruitment 
Extended observer-based consensus tracking control for MASs with external disturbance and dynamic event-triggered strategy
《Science China(Technological Sciences)》2025年第3期228-238,共11页Jian LIAO Kai MAO Bin XIN Jing HE Yaoqing ZHANG Jun CHENG Delin LUO Shaolei ZHOU 
supported by Guangdong Major Project of Basic and Applied Basic Research(Grant No.2023B0303000016);the National Natural Science Foundation of China(Grant No.U21A20487);Shenzhen Technology Project(Grant Nos.JCYJ20220818101206014,JCYJ20220818101211025);the CAS Key Technology Talent Program,the National Outstanding Youth Talents Support Program(Grant No.61822304);Shanghai Municipal Science and Technology Major Project(Grant No.2021SHZDZX0100);Shanghai Municipal Commission of Science and Technology Project(Grant No.19511132101);the Projects of Major International(Regional)Joint Research Program of NSFC(Grant No.61720106011);the National Natural Science Foundation of China(Grant No.62372440)。
This article explores the leader-following consensus tracking(LFCK)control issues of multi-agent systems(MASs)in the presence of external disturbances and general directed fixed communication topology.Its purpose is t...
关键词:leader-following consensus tracking(LFCK) dynamic event-triggered strategy external disturbances state observer multi-agent systems 
Optimal condition analysis of target localization using multi-agents with uncertain positions
《Control Theory and Technology》2025年第1期131-144,共14页Yi Hou Ning Hao Fenghua He Chen Xie Yu Yao 
This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the unc...
关键词:Cramer-Rao lower bound(CRLB) Target localization Uncertain sensor position Multi-agent systems 
A review of event-triggered consensus control in multi-agent systems
《Journal of Control and Decision》2025年第1期1-23,共23页Yihang Dou Guansheng Xing Aohua Ma Guanwu Zhao 
supported by the National Natural Science Foundation of China[grant numbers 61503118,62006135].
Event-triggered control(ETC)of multi-agent systems(MASs)has been extensively investigated due to its advantages in conserving communication resources and reducing control frequency.This paper provides a systematic rev...
关键词:Event-triggered consensus multi-agent systems resource utilisation Zeno behaviour finite-time control 
Reinforcement learning based privacy-preserving consensus tracking control of nonstrict-feedback discrete-time multi-agent systems
《Frontiers of Information Technology & Electronic Engineering》2025年第3期456-471,共16页Yang YANG Fanming HUANG Dong YUE 
Project supported by the National Natural Science Foundation of China(Nos.62473204 and 61873130);the"Chunhui Program"Collaborative Scientific Research Project,China(No.202202004);the Natural Science Foundation of Nanjing University of Posts and Telecommunications,China(Nos.NY221082,NY222144,and NY223075);the Huali Program for Excellent Talents in Nanjing University of Posts and Telecommunications,China。
This paper investigates a privacy-preserving consensus tracking problem for a class of nonstrict-feedback discrete-time multi-agent systems(MASs).An improved Liu cryptosystem is developed to alleviate the errors betwe...
关键词:Multi-agent systems Consensus tracking PRIVACY-PRESERVING Reinforcement learning 
Gossip-based algorithm for economic dispatch of microgrids integrating isolated and grid-connected modes
《Science China(Information Sciences)》2025年第3期254-267,共14页Yanmeng ZHANG Yalin ZHANG Zhongxin LIU Zengqiang CHEN 
supported by National Natural Science Foundation of China(Grant No.62103203);Natural Science Foundation of Tianjin(Grant No.22JCQNJC01440);General Terminal IC Interdisciplinary Science Center of Nankai University。
A gossip-based economic dispatch(ED)algorithm for microgrids is presented in this paper,designed to cope with communication link failures and enable smooth switching of microgrid operation modes.The algorithm is suppo...
关键词:distributed optimization economic dispatch gossip algorithms multi-agent systems consensus algorithm 
Event-triggered leader-follower bipartite consensus control for nonlinear multi-agent systems under DoS attacks
《Science China(Information Sciences)》2025年第3期282-297,共16页Wei SU Chaoxu MU Song ZHU Ben NIU Changyin SUN 
supported by National Key Research and Development Program of China(Grant No.2021YFB1714700);National Natural Science Foundation of China(Grant No.62333016)。
Aiming at the consensus control problem of nonlinear multi-agent systems(MASs)under directed topology,a leader-follower bipartite consensus control strategy is proposed.This strategy takes into account the potential f...
关键词:multi-agent systems neural networks bipartite consensus event-trigger denial-of-service attack 
An Emotion Model for Predator-Prey Bird Behavior
《International Journal of Intelligence Science》2025年第1期56-78,共23页Ana Lilia Laureano-Cruces André Navarro-Bárcenas Ricardo Céspedes-Valle Martha Mora-Torres Lourdes Sánchez-Guerrero 
One of the main objectives of artificial intelligence lies in the simulation of the behavior of living organisms;emotions are a fundamental part of life, and they cannot be left aside when simulating behavior. In this...
关键词:Predator-Prey Bird Behavior Affective-Cognitive Structure Computer Simulation Multi-Agent Systems Mental Models 
Cooperative output regulation of heterogeneous directed multi-agent systems:a fully distributed model-free reinforcement learning framework
《Science China(Information Sciences)》2025年第2期166-181,共16页Xiongtao SHI Yanjie LI Chenglong DU Huiping LI Chaoyang CHEN Weihua GUI 
supported by National Natural Science Foundation of China(Grant Nos.62303492,61977019,62222306);Shenzhen Basic Research Program(Grant Nos.JCYJ20220818102415033,JSGG20201103093802006,KJZD2023092311-4222045);Natural Science Foundation of Hunan Province(Grant No.2023JJ40765);Natural Science Foundation of Changsha(Grant No.kq2208287);Science and Technology Innovation Program of Hunan Province(Grant No.2022WZ1001);China Postdoctoral Innovation Talents Support Program(Grant No.BX20230430)。
In this paper,the cooperative output regulation(COR)problem of a class of unknown heterogeneous multi-agent systems(MASs)with directed graphs is studied via a model-free reinforcement learning(RL)based fully distribut...
关键词:model-free reinforcement learning unknown heterogeneous multi-agent systems fully distributed event-triggered control directedgraph 
Nonconvex Constrained Consensus of Discrete-Time Heterogeneous Multi-Agent Systems with Arbitrarily Switching Topologies
《Journal of Electronic Research and Application》2025年第1期14-22,共9页Honghao Wu 
2024 Jiangsu Province Youth Science and Technology Talent Support Project;2024 Yancheng Key Research and Development Plan(Social Development)projects,“Research and Application of Multi Agent Offline Distributed Trust Perception Virtual Wireless Sensor Network Algorithm”and“Research and Application of a New Type of Fishery Ship Safety Production Monitoring Equipment”。
This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-ord...
关键词:HETEROGENEOUS Multi-agent systems Nonconvex constraint CONSENSUS 
检索报告 对象比较 聚类工具 使用帮助 返回顶部