OPTIMAL_CONTROL

作品数:613被引量:1054H指数:13
导出分析报告
相关作者:蔡其发黄思训李永进孙健国刘会坡更多>>
相关机构:南京航空航天大学东南大学北京理工大学解放军理工大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划国家教育部博士点基金中国博士后科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=IEEE/CAA Journal of Automatica Sinicax
条 记 录,以下是1-10
视图:
排序:
Revisiting the LQR Problem of Singular Systems
《IEEE/CAA Journal of Automatica Sinica》2024年第11期2236-2252,共17页Komeil Nosrati Juri Belikov Aleksei Tepljakov Eduard Petlenkov 
supported by the European Union’s Horizon Europe research and innovation programme (101120657);project ENFIELD (European Lighthouse to Manifest Trustworthy and Green AI), the Estonian Research Council (PRG658, PRG1463);the Estonian Centre of Excellence in Energy Efficiency, ENER (TK230) funded by the Estonian Ministry of Education and Research。
In the development of linear quadratic regulator(LQR) algorithms, the Riccati equation approach offers two important characteristics——it is recursive and readily meets the existence condition. However, these attribu...
关键词:DC motor optimal control penalized weighted regression power system quadratic regulator singular system 
Deep Reinforcement Learning or Lyapunov Analysis?A Preliminary Comparative Study on Event-Triggered Optimal Control
《IEEE/CAA Journal of Automatica Sinica》2024年第7期1702-1704,共3页Jingwei Lu Lefei Li Qinglai Wei Fei-Yue Wang 
supported by the Motion G,Inc.Collaborative Research Project for Fundamental Modeling and Parallel Drive-Control of Servo Drive Systems。
Dear Editor,This letter develops a novel method to implement event-triggered optimal control(ETOC) for discrete-time nonlinear systems using parallel control and deep reinforcement learning(DRL), referred to as Deep-E...
关键词:DEEP LETTER enable 
Policy Gradient Adaptive Dynamic Programming for Model-Free Multi-Objective Optimal Control
《IEEE/CAA Journal of Automatica Sinica》2024年第4期1060-1062,共3页Hao Zhang Yan Li Zhuping Wang Yi Ding Huaicheng Yan 
the National Natural Science Foundation of China(61922063,62273255,62150026);in part by the Shanghai International Science and Technology Cooperation Project(21550760900,22510712000);the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100);the Fundamental Research Funds for the Central Universities。
Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is...
关键词:POLICY GRADIENT OPTIMAL 
Adaptive Optimal Output Regulation of Interconnected Singularly Perturbed Systems With Application to Power Systems
《IEEE/CAA Journal of Automatica Sinica》2024年第3期595-607,共13页Jianguo Zhao Chunyu Yang Weinan Gao Linna Zhou Xiaomin Liu 
supported by the National Natural Science Foundation of China (62073327,62273350);the Natural Science Foundation of Jiangsu Province (BK20221112)。
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl...
关键词:Adaptive optimal control decentralized control output regulation reinforcement learning(RL) singularly perturbed systems(SPSs) 
Sequential Inverse Optimal Control of Discrete-Time Systems
《IEEE/CAA Journal of Automatica Sinica》2024年第3期608-621,共14页Sheng Cao Zhiwei Luo Changqin Quan 
This paper presents a novel sequential inverse optimal control(SIOC)method for discrete-time systems,which calculates the unknown weight vectors of the cost function in real time using the input and output of an optim...
关键词:Inverse optimal control promised calculation step sequential calculation 
Value Iteration-Based Cooperative Adaptive Optimal Control for Multi-Player Differential Games With Incomplete Information
《IEEE/CAA Journal of Automatica Sinica》2024年第3期690-697,共8页Yun Zhang Lulu Zhang Yunze Cai 
supported by the Industry-University-Research Cooperation Fund Project of the Eighth Research Institute of China Aerospace Science and Technology Corporation (USCAST2022-11);Aeronautical Science Foundation of China (20220001057001)。
This paper presents a novel cooperative value iteration(VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the l...
关键词:Adaptive dynamic programming incomplete information multi-player differential game value iteration 
Decentralized Optimal Control and Stabilization of Interconnected Systems With Asymmetric Information
《IEEE/CAA Journal of Automatica Sinica》2024年第3期698-707,共10页Na Wang Xiao Liang Hongdan Li Xiao Lu 
supported by the National Natural Science Foundation of China(62273213,62073199,62103241);Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001);Natural Science Foundation of Shandong Province(ZR2020MF095,ZR2021QF107);Taishan Scholarship Construction Engineering;the Original Exploratory Program Project of National Natural Science Foundation of China(62250056);Major Basic Research of Natural Science Foundation of Shandong Province(ZR2021ZD14);High-level Talent Team Project of Qingdao West Coast New Area(RCTD-JC-2019-05)。
The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p...
关键词:Asymmetric information decentralized control forwardbackward stochastic difference equations interconnected system stalibization 
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications被引量:7
《IEEE/CAA Journal of Automatica Sinica》2024年第1期18-36,共19页Ding Wang Ning Gao Derong Liu Jinna Li Frank L.Lewis 
supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003);the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5);Beijing Natural Science Foundation (JQ19013)。
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...
关键词:Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL) 
An Optimal Control-Based Distributed Reinforcement Learning Framework for A Class of Non-Convex Objective Functionals of the Multi-Agent Network被引量:2
《IEEE/CAA Journal of Automatica Sinica》2023年第11期2081-2093,共13页Zhe Chen Ning Li 
supported in part by the National Natural Science Foundation of China(NSFC)(61773260);the Ministry of Science and Technology (2018YFB130590)。
This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objecti...
关键词:Distributed optimization MULTI-AGENT optimal control reinforcement learning(RL) 
Policy Iteration for Optimal Control of Discrete-Time Time-Varying Nonlinear Systems被引量:1
《IEEE/CAA Journal of Automatica Sinica》2023年第3期781-791,共11页Guangyu Zhu Xiaolu Li Ranran Sun Yiyuan Yang Peng Zhang 
supported in part by Fundamental Research Funds for the Central Universities(2022JBZX024);in part by the National Natural Science Foundation of China(61872037,61273167)。
Aimed at infinite horizon optimal control problems of discrete time-varying nonlinear systems,in this paper,a new iterative adaptive dynamic programming algorithm,which is the discrete-time time-varying policy iterati...
关键词:Adaptive critic designs adaptive dynamic programming approximate dynamic programming optimal control policy iteration TIME-VARYING 
检索报告 对象比较 聚类工具 使用帮助 返回顶部