PREDATOR-PREY_MODEL

作品数:135被引量:144H指数:5
导出分析报告
相关作者:李华陈兰荪许志奋陈滨张薇更多>>
相关机构:陕西师范大学东南大学武汉理工大学盐城师范学院更多>>
相关期刊:更多>>
相关基金:国家自然科学基金福建省自然科学基金北京市自然科学基金中国博士后科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 学科=理学x
条 记 录,以下是1-10
视图:
排序:
Stability Analysis of an Epidemic Predator-Prey Model with Prey Dispersal and Holling Type-Ⅱ Functional Response
《Journal of Mathematical Research with Applications》2025年第2期179-194,共16页Lingshu WANG Mei ZHANG Ya-nan ZHANG 
Supported by the Social Science Foundation of Hebei Province(Grant No.HB23TJ003);the Science Research Project of Hebei Education Department(Grant No.BJK2024197)。
This paper examines an epidemic predator-prey model with prey dispersal and Holling type-II functional response. In this model, it is assumed that the predator population suffers a transmissible disease. By analyzing ...
关键词:predator-prey model dispersal Holling type-II functional response Hopf bifurcation stability 
A Delayed Predator-Prey Model with Fear Effect and Cannibalism
《Journal of Applied Mathematics and Physics》2025年第2期506-524,共19页Guoqing Li Xiaolin Lin Shaoyi Geng 
In this paper, we consider the fear effect and gestation delay, and then establish a delayed predator-prey model with cannibalism. Firstly, we prove the well-posedness of the model. Secondly, the existence and stabili...
关键词:Predator-Prey Model Fear Effect CANNIBALISM Stability Hopf Bifurcation 
Instability and bifurcation analysis of a diffusive predator-prey model with fear effect and delay
《International Journal of Biomathematics》2024年第8期245-290,共46页Hongyan Sun Jianzhi Cao Pengmiao Hao Lijie Zhang 
supported by the National Natural Science Foundation of China(Nos.12171135 and 11771115);the Natural Science Foundation of Hebei Province(Nos.A2020201021 and A2019201396);the Post Doctor Start-up Foundation of Zhejiang Normal University(No.ZC304021906);the Research Funding for High-Level Innovative Talents of Hebei University(No.801260201242).
In this paper,a delayed diffusive predator-prey model with fear effect under Neumann boundary conditions is considered.For the system without diffusion and delay,the conditions for the existence and local stability of...
关键词:Delayed diffusive system Hopf bifurcation Turing instability pattern formation delay-diffusion-driven instability fear effect 
Dynamics of a predator-prey model with mutation and nonlocal effect
《International Journal of Biomathematics》2024年第8期123-146,共24页Bang-Sheng Han Shao-Yue Mi Miao-Miao Wen Lin Zhao 
supported by the Natural Science Foundation of China(12161052,11801470 and U22A20231);the Natural Science Foundation of Sichuan Province(2022NSFSC1819);the Central Government Funds for Guiding Local Scientific and Technological Development(2021zYD0010);the Fundamental Research Funds for the Central Universities(2682022zTPY080).
The global dynamics of a nonlocal predator-prey model with mutation are investigated in this paper.First,by building a new comparison principle and constructing monotone iterative sequences,we give the existence of th...
关键词:Predator-prey model NONLOCAL MUTATION WELL-POSEDNESS asymptotic behavior 
Global stability of a quasilinear predator-prey model with indirect pursuit-evasion interaction
《International Journal of Biomathematics》2024年第8期147-174,共28页Chuanjia Wan Pan Zheng Wenhai Shan 
supported by the National Natural Science Foundation of China(Grant Nos.11601053,12271064);the Science and Technology Research Project of Chongqing Municipal Education Commission(Grant No.KJZD-K202200602);the Natural Science Foundation of Chongqing(Grant No.CSTB2023NSCQ-MSX0099);the Hong Kong Scholars Program(Grant Nos.XJ2021042,2021-005)and the Young Hundred Talents Program of CQUPT in 2022-2024.
This paper deals with a predator-prey model with indirect prey-taxis and predator-taxis{u_(t)=■·(D_(1)(u)■u)-χ■·(S_(1)(u)■z)+u(αv-a_(1)-b_(1)u),x∈Ω,t>0,u_(t)=■·(D_(2)(v)■v)-ε■·(S_(1)(v)■w)+v(a_(2)-b_(...
关键词:Predator-prey model QUASILINEAR global boundedness STABILIZATION 
Bifurcations and steady states of a predator-prey model with strong Allee and fear effects
《International Journal of Biomathematics》2024年第7期143-185,共43页Mengxin Chen Xuezhi Li Ranchao Wu 
supported by the National Natural Science Foundation of China(Nos.11971032 and 12271143);the China Postdoctoral Science Foundation(No.2021M701118).
In this paper,the predator-prey model with strong Allee and fear effects is considered.The existence of the equilibria and their stability are established.Especially it is found that there is an interesting degenerate...
关键词:Predator-prey model BIFURCATION fear effect Allee effect 
Qualitative Analysis of a Diffusive Predator-prey Model with Nonlcoal Fear Effect
《数学理论与应用》2024年第3期67-82,共16页Shen Zhongyuan Zhang Xuebing Li Shunjie 
supported by the National Natural Science Foundation of China (No.12271261);the National Undergraduate Training Program for Innovation and Entrepreneurship (No.202310300044Z)。
In this paper,we establish a delayed predator-prey model with nonlocal fear effect.Firstly,the existence,uniqueness,and persistence of solutions of the model are studied.Then,the local stability,Turing bifurcation,and...
关键词:Delay Nonlocal fear effect Global stability Hopf bifurcation 
Global Dynamics in a Predator-Prey Model with Allee Effect
《Journal of Applied Mathematics and Physics》2024年第7期2377-2385,共9页Tianjing Wang Fuqin Sun 
Since the last century, various predator-prey systems have garnered widespread attention. In particular, the predator-prey systems have sparked significant interest among applied mathematicians and ecologists. From th...
关键词:Bazykin Allee Effect Hopf Bifurcation 
Dynamical analysis and chaos control of a fractional-order Leslie-type predator-prey model with Caputo derivative
《International Journal of Biomathematics》2024年第4期105-131,共27页Seval Isik Figen Kangalgil 
In this paper,the dynamical behaviors of a discrete-time fractional-order population model are considered.The stability analysis and the topological classification of the model at the fixed point have been investigate...
关键词:FRACTIONAL-ORDER predator-prey model DISCRETIZATION BIFURCATION CHAOS 
Bifurcation and Turing Pattern Formation in a Diffusion Modified Leslie-Gower Predator-Prey Model with Crowley-Martin Functional Response
《Journal of Applied Mathematics and Physics》2024年第6期2190-2211,共22页Dong Wang Yani Ma 
In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term....
关键词:Modified Leslie-Gower Model Crowley-Martin Function Response Hopf Bifurcation Transcritical Bifurcation Turing Instability 
检索报告 对象比较 聚类工具 使用帮助 返回顶部