SOLITARY_WAVES

作品数:184被引量:132H指数:5
导出分析报告
相关作者:佘守宪邵嗣烘汤华中李世友张士峰更多>>
相关机构:北京交通大学北京大学国防科学技术大学德克萨斯大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划中国博士后科学基金上海市自然科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Journal of Ocean Engineering and Sciencex
条 记 录,以下是1-7
视图:
排序:
New-fashioned solitons of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow
《Journal of Ocean Engineering and Science》2024年第4期353-363,共11页Tarikul Islam Ali Akbar Hadi Rezazadeh Ahmet Bekir 
The Schrodinger equation type nonlinear coupled Maccari system is a significant equation that flourished with the wide-ranging arena concerning fluid flow and the theory of deep-water waves,physics of plasma,nonlinear...
关键词:Rational(G'/G)-expansion method Coupled nonlinear schrodinger equations SOLITON Improved tanh method Exact solutions 
New solitary waves and exact solutions for the fifth-order nonlinear wave equation using two integration techniques
《Journal of Ocean Engineering and Science》2023年第5期475-480,共6页Ahmed H.Arnous Mohammad Mirzazadeh Lanre Akinyemi Arzu Akbulut 
In this paper,we discussed the enhanced Kudryashov’s and general projective Riccati equations tech-niques for obtaining exact solutions to the fifth-order nonlinear water wave(FONLWWE)equation.Using the enhanced Kudr...
关键词:Enhanced Kudryashov method Riccati equation Water waves Fifth-order nonlinear model Solitons 
Specific wave profiles and closed-form soliton solutions for generalized nonlinear wave equation in(3+1)-dimensions with gas bubbles in hydrodynamics and fluids
《Journal of Ocean Engineering and Science》2023年第1期91-102,共12页Sachin Kumar Ihsanullah Hamid M.A.Abdou 
the Institution of Emi-nence,University of Delhi,India,for providing financial assistance for this research through the IoE scheme under Faculty Research Programme(FRP)with Ref.No./IoE/2021/12/FRP.
Nonlinear evolution equations(NLEEs)are frequently employed to determine the fundamental principles of natural phenomena.Nonlinear equations are studied extensively in nonlinear sciences,ocean physics,fluid dynamics,p...
关键词:Closed-form solutions Dynamical wave patterns Analytic solutions Nonlinear wave equation GERF Method Solitary waves SOLITONS 
Evolutionary dynamics of solitary wave profiles and abundant analytical solutions to a(3+1)-dimensional burgers system in ocean physics and hydrodynamics
《Journal of Ocean Engineering and Science》2023年第1期1-14,共14页Sachin Kumar Amit Kumar Brij Mohan 
supported and funded by SERB-DST,India,under project scheme EEQ/2020/000238.
In the fields of oceanography,hydrodynamics,and marine engineering,many mathematicians and physi-cists are interested in Burgers-type equations to show the different dynamics of nonlinear wave phenom-ena,one of which ...
关键词:Dynamical structures Burger system GERF Method Generalized kudryashov method Closed-form solutions Solitary waves 
Abundant closed-form wave solutions and dynamical structures of soliton solutions to the (3+1)-dimensional BLMP equation in mathematical physics
《Journal of Ocean Engineering and Science》2022年第2期178-187,共10页Sachin Kumar Amit Kumar 
Under the project scheme MATRICS(MTR/2020/000531);the Science and Engineering Research Board,SERB-DST,India is fund-ing this research.Sachin Kumar,the author,has received this re-search grant.
The physical principles of natural occurrences are frequently examined using nonlinear evolution equa-tions(NLEEs).Nonlinear equations are intensively investigated in mathematical physics,ocean physics,scientific appl...
关键词:Closed-form solutions Generalized exponential rational function METHOD SOLITONS Generalized Kudryashov method Solitary waves 
Symmetry analysis,closed-form invariant solutions and dynamical wave structures of the generalized (3+1)-dimensional breaking soliton equation using optimal system of Lie subalgebra
《Journal of Ocean Engineering and Science》2022年第2期188-201,共14页Monika Niwas Sachin Kumar Harsha Kharbanda 
The author,Sachin Kumar,is grateful to the Science and Engi-neering Research Board(SERB),DST,India under project scheme Empowerment and Equity Opportunities for Excellence in Science(EEQ/2020/000238)for the financial support in carrying out this research.
Nonlinear evolution equations(NLEEs)are primarily relevant to nonlinear complex physical systems in a wide range of fields,including ocean physics,plasma physics,chemical physics,optical fibers,fluid dy-namics,biology...
关键词:Lie symmetry technique Infinitesimal generators Optimal systems Closed-form wave solutions Solitary waves 
A numerical technique based on collocation method for solving modified Kawahara equation被引量:1
《Journal of Ocean Engineering and Science》2018年第1期67-75,共9页Turgut Ak S.Battal Gazi Karakoc 
In this article,a numerical solution of the modified Kawahara equation is presented by septic B-spline collocation method.Applying the von-Neumann stability analysis,the present method is shown to be unconditionally s...
关键词:Modified Kawahara equation Finite element method COLLOCATION Solitary waves B-SPLINE 
检索报告 对象比较 聚类工具 使用帮助 返回顶部