BLOWUP

作品数:81被引量:104H指数:5
导出分析报告
相关作者:尚亚东梁之磊郭大鹏陈国旺杨志坚更多>>
相关机构:西安石油学院上海交通大学西南财经大学郑州大学更多>>
相关期刊:《Science China Mathematics》《工程数学学报》《烟台大学学报(自然科学与工程版)》《Journal of Partial Differential Equations》更多>>
相关基金:国家自然科学基金河南省自然科学基金中国博士后科学基金国家教育部博士点基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
From Hölder Continuous Solutions of 3D Incompressible Navier-Stokes Equations to No-Finite Time Blowup on [ 0,∞ ]
《Advances in Pure Mathematics》2024年第9期695-743,共49页Terry E. Moschandreou 
This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through...
关键词:Navier-Stokes Periodic Navier-Stokes Equations 3-Torus PERIODIC Ball Sphere Hölder Continuous Functions Uniqueness Angular Velocity Velocity in Terms of Vorticity 
The Characteristics of Solutions to Semilinear Wave Equation with Logarithmic Plus Polynomial Nonlinearities
《Annals of Applied Mathematics》2024年第3期262-284,共23页Md Salik Ahmed Weipeng Wu 
The semilinear wave equation with logarithmic and polynomial nonlinearities is considered in this paper. By adjusting and using potential well method, we attain the global-in-time existence and infinite time blowup so...
关键词:Global existence BLOWUP logarithmic and polynomial combined nonlinearity potential well 
Blowup of the Solutions for a Reaction-Advection- Diffusion Equation with Free Boundaries
《Journal of Partial Differential Equations》2023年第4期394-403,共10页YANG Jian 
supported by Natural Science Foundation of China(No.11901238);Natural Science Foundation of Shandong Province(No.ZR2019MA063).
We investigate a blowup problem of a reaction-advection-diffusion equa-tion with double free boundaries and aim to use the dynamics of such a problem to describe the heat transfer and temperature change of a chemical ...
关键词:Nonlinear reaction-advection-diffusion equation one-phase Stefan problem DECAY BLOWUP 
Asymptotic stability of explicit infinite energy blowup solutions of the 3D incompressible Navier-Stokes equations
《Science China Mathematics》2023年第11期2523-2544,共22页Fangyu Han Zhong Tan 
supported by National Natural Science Foundation of China(Grant Nos.12231016 and 12071391);Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010860)。
In this paper,we study the dynamical stability of a family of explicit blowup solutions of the threedimensional(3D)incompressible Navier-Stokes(NS)equations with smooth initial values,which is constructed in Guo et al...
关键词:Navier-Stokes equations asymptotic stability blowup solution infinite energy Nash-Moser-Hormander iteration scheme zero-viscosity limit 
THE GLOBAL SOLUTION AND BLOWUP OF A SPATIOTEMPORAL EIT PROBLEM WITH A DYNAMICAL BOUNDARY CONDITION
《Acta Mathematica Scientia》2023年第4期1881-1914,共34页谢明洪 谭忠 
the NNSF of China(12071391);the Guangdong Basic and Applied Basic Research Foundation (2022A1515010069)。
We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the fini...
关键词:spatiotemporal EIT problem fractional Dirichlet-to-Neumann operator critical exponent bubbling phenomena 
Blowup of Solutions to the Non-Isentropic Compressible Euler Equations with Time-Dependent Damping and Vacuum
《Journal of Applied Mathematics and Physics》2023年第7期1881-1894,共14页Yuping Feng Huimin Yu Wanfang Shen 
This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data i...
关键词:Compressible Euler Equations BLOWUP General Time-Dependent Damping VACUUM 
Smooth Solution of Multi-dimensional Nonhomogeneous Conservation Law: Its Formula, and Necessary and Sufficient Blowup Criterion
《Acta Mathematicae Applicatae Sinica》2023年第1期17-27,共11页Gao-wei CAO Hui KAN Wei XIANG Xiao-zhou YANG 
The research of Gaowei Cao was supported in part by the NSFC(Grant 11701551 and Grant 11971024);the China Scholarship Council No.202004910200.The research of Hui Kan was supported in part by the NSFC(Grant 11801551);The research of Wei Xiang was supported in part by the Research Grants Council of the HKSAR,China(Project No.City U 11332916,Project No.City U 11304817 and Project No.City U 11303518);The research of X.Z.Yang was supported in part by the NSFC(Grant 11471332)。
In this paper, we are concerned with the necessary and sufficient condition of the global existence of smooth solutions of the Cauchy problem of the multi-dimensional scalar conservation law with source-term,where the...
关键词:global smooth solution BLOWUP multi-dimensional conservation law solution formula 
Analytical Blowup Solutions to the Compressible Euler Equations with Time-depending Damping
《Acta Mathematicae Applicatae Sinica》2022年第3期568-578,共11页Jian-wei DONG Guang-pu LOU Qiao ZHANG 
supported by the Project of Youth Backbone Teachers of Colleges and Universities in Henan Province(2019GGJS176);the Vital Science Research Foundation of Henan Province Education Department(22A110024)。
In this paper,the analytical blowup solutions of the N-dimensional radial symmetric compressible Euler equations are constructed.Some previous results of the blowup solutions for the compressible Euler equations with ...
关键词:compressible Euler equations time-depending damping BLOWUP 
Blowup Behavior of Solutions to an w-diffusion Equation on the Graph
《Journal of Partial Differential Equations》2022年第2期148-162,共15页ZHU Liping HUANG Lin 
In this article,we discuss the blowup phenomenon of solutions to the wdiffusion equation with Dirichlet boundary conditions on the graph.Through Banach fixed point theorem,comparison principle,construction of auxiliar...
关键词:Simple graph DISCRETE blowup time blowup rate 
Finite Time Blowup with Upper Bound of Blowup Time of Solutions to Semilinear Parabolic Equations with General Nonlinearity
《Chinese Quarterly Journal of Mathematics》2022年第1期103-110,共8页LI Na FANG Shao-mei 
Supported by the Nation Natural Science Foundation of China(Grant No.11271141);Chongqing Science and Technology Commission(Grant No.cstc2018jcyjAX0787).
In this paper,we consider a semilinear parabolic equation with a general nonlinearity.We establish a new finite time blow-up criterion and also derive the upper bound for the blow-up time.The results partially general...
关键词:Semilinear parabolic equation General nonlinearity Finite time blowup Upper bound 
检索报告 对象比较 聚类工具 使用帮助 返回顶部