DISSIPATION

作品数:537被引量:948H指数:16
导出分析报告
相关领域:理学更多>>
相关作者:徐瑞雪张显文张凤蛟单刚义郑铁刚更多>>
相关机构:中国科学院大学特灵空调系统(中国)有限公司中国科学技术大学清华大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划中国博士后科学基金国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Acta Mathematica Scientiax
条 记 录,以下是1-10
视图:
排序:
ZERO DISSIPATION LIMIT TO A RAREFACTION WAVE WITH A VACUUM FOR A COMPRESSIBLE,HEAT CONDUCTING REACTING MIXTURE
《Acta Mathematica Scientia》2023年第6期2533-2552,共20页苌生闯 段然 
supported by the National Natural Science Foundation of China (11971193 and 12171001)。
In this paper,we study the zero dissipation limit with a vacuum for the reacting mixture Navier-Stokes equations.For proper smooth initial data that the initial density tends to zero as the relevant physical coefficie...
关键词:zero dissipation limit VACUUM reacting mixture Navier-Stokes equations 
ZERO DISSIPATION LIMIT TO RAREFACTION WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH SELECTED DENSITY-DEPENDENT VISCOSITY
《Acta Mathematica Scientia》2021年第5期1635-1658,共24页Yifan SU Zhenhua GUO 
supported by the National Natural Science Foundation of China(11671319,11931013).
This paper is devoted to studying the zero dissipation limit problem for the one-dimensional compressible Navier-Stokes equations with selected density-dependent viscosity.In particular,we focus our attention on the v...
关键词:compressible Navier-Stokes equations density-dependent viscosity rarefaction wave zero dissipation limit 
GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION
《Acta Mathematica Scientia》2018年第3期745-755,共11页Dexing KONG Qi LIU 
supported in part by the NNSF of China(11271323,91330105);the Zhejiang Provincial Natural Science Foundation of China(LZ13A010002);the Science Foundation in Higher Education of Henan(18A110036)
In this article, we investigate the hyperbolic geometry flow with time-dependent dissipation(δ2 gij)/δt2+μ/((1 + t)λ)(δ gij)/δt=-2 Rij,on Riemann surface. On the basis of the energy method, for 0 〈 λ...
关键词:Hyperbolic geometry flow time-dependent damping classical solution energy method global existence 
ZERO DISSIPATION LIMIT TO A RIEMANN SOLUTION FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM OF GENERAL GAS被引量:1
《Acta Mathematica Scientia》2017年第5期1177-1208,共32页Hakho HONG 王腾 
Fundamental Research Funds for the Central Universities(2015ZCQ-LY-01 and BLX2015-27);the National Natural Sciences Foundation of China(11601031)
For the general gas including ideal polytropic gas, we study the zero dissipation limit problem of the full 1-D compressible Navier-Stokes equations toward the superposition of contact discontinuity and two rarefactio...
关键词:zero dissipation limit compressible Navier-Stokes equations contact discontinuity rarefaction wave general gas 
LOCAL DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS
《Acta Mathematica Scientia》2017年第5期1519-1535,共17页张志娟 蔚喜军 常延贞 
Supported by National Natural Science Foundation of China(11571002,11461046);Natural Science Foundation of Jiangxi Province,China(20151BAB211013,20161ACB21005);Science and Technology Project of Jiangxi Provincial Department of Education,China(150172);Science Foundation of China Academy of Engineering Physics(2015B0101021);Defense Industrial Technology Development Program(B1520133015)
In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that th...
关键词:elliptic interface problem minimal dissipation local discontinuous Galerkin method error estimates 
EXISTENCE AND UNIQUENESS OF ENTROPY SOLUTION TO PRESSURELESS EULER SYSTEM WITH A FLOCKING DISSIPATION被引量:2
《Acta Mathematica Scientia》2016年第5期1262-1284,共23页金春银 
We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theor...
关键词:pressureless Euler system Cucker-Smale model entropy solution FLOCKING 
ZERO DISSIPATION LIMIT TO CONTACT DISCONTINUITY FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM OF GENERAL GAS被引量:2
《Acta Mathematica Scientia》2016年第1期157-172,共16页Hakho HONG 
The zero dissipation limit to the contact discontinuities for one-dimensional com- pressible Navier-Stokes equations was recently proved for ideal polytropic gas (see Huang et al. [15, 22] and Ma [31]), but there is...
关键词:zero dissipation limit Navier-Stokes equations contact discontinuity generalgas 
HOMOGENIZATION FOR NONLINEAR SCHRODINGER EQUATIONS WITH PERIODIC NONLINEARITY AND DISSIPATION IN FRACTIONAL ORDER SPACES
《Acta Mathematica Scientia》2015年第3期567-582,共16页冯斌华 赵敦 孙春友 
supported by the NSFC Grants 10601021 and 11475073
We study the nonlinear SchrSdinger equation with time-oscillating nonlinearity and dissipation originated from the recent studies of Bose-Einstein condensates and optical systems which reads iψt+△ψ+Ф(ωt)|ψ...
关键词:Nonlinear SchrSdinger equation averaged equation global existence conver-gence 
A NOTE ON GLOBAL WELL-POSEDNESS OF SOLUTIONS TO BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION被引量:7
《Acta Mathematica Scientia》2015年第1期112-120,共9页叶专 
partially supported by NSFC(11171026;11371059);BNSF(2112023);the Fundamental Research Funds for the Central Universities of China
The goal of this paper is to consider the global well-posedness to n-dimensional (n 〉 3) Boussinesq equations with fractional dissipation. More precisely, it is proved that there exists a unique global regular solu...
关键词:Boussinesq equations fractional Laplacian global regularity 
ON TRANSMISSION PROBLEM FOR VISCOELASTIC WAVE EQUATION WITH A LOCALIZED A NONLINEAR DISSIPATION
《Acta Mathematica Scientia》2013年第2期362-374,共13页Jeong Ja BAE Seong Sik KIM 
In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials, one component bei...
关键词:Existence of solution uniform decay transmission problem boundary valueproblem localized dissipation 
检索报告 对象比较 聚类工具 使用帮助 返回顶部