DYNAMICAL_SYSTEMS

作品数:175被引量:235H指数:8
导出分析报告
相关作者:李远禄于盛林任雪梅陈杰陈予恕更多>>
相关机构:中国科学院数学与系统科学研究院西安交通大学南京师范大学北京理工大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划中国博士后科学基金河南省自然科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Floer Homology:From Generalized Morse–Smale Dynamical Systems to Forman’s Combinatorial Vector Fields
《Communications in Mathematics and Statistics》2024年第4期695-720,共26页Marzieh Eidi Jürgen Jost 
We construct a Floer type boundary operator for generalised Morse–Smale dynamical systems on compact smooth manifolds by counting the number of suitable flow lines between closed(both homoclinic and periodic)orbits a...
关键词:FIELD MORSE FLOW 
Neural Liénard system: learning periodic manipulation skills through dynamical systems
《Science China(Information Sciences)》2024年第12期252-267,共16页Haoyu ZHANG Long CHENG Yu ZHANG Yifan WANG 
supported in part by National Natural Science Foundation of China (Grant Nos.62025307,62333023,62311530097);Beijing Municipal Natural Science Foundation (Grant No.L243014);CAS Project for Young Scientists in Basic Research (Grant No.YSBR-034)。
Learning from demonstrations provides effective methods for teaching robot manipulation skills.However, capturing periodic manipulation skills remains challenging with the current techniques. To address this gap, we i...
关键词:learning from demonstrations stable dynamical system periodic motions 
Multi-step state-based opacity for unambiguous weighted machines
《Science China(Information Sciences)》2024年第11期207-217,共11页Zhipeng ZHANG Chengyi XIA Guoyuan QI Jun FU 
supported by National Natural Science Foundation of China(Grant Nos.62203328,62173247);Tianjin Natural Science Foundation of China(Grant Nos.21JCQNJC00840,22JCZDJC00550);National Key Research and Development Program of China(Grant No.2018AAA0101603)。
Opacity is a central concept in the issue of privacy security and has been studied extensively in fields such as finite automata,probabilistic automata,and stochastic automata.Here,we investigate the problem of valida...
关键词:logical dynamical systems weighted state machine state estimation OPACITY cyber physical systems 
Learning the continuous-time optimal decision law from discrete-time rewards
《National Science Open》2024年第5期130-147,共18页Ci Chen Lihua Xie Kan Xie Frank Leroy Lewis Yilu Liu Shengli Xie 
supported by the Guangdong Basic and Applied Basic Research Foundation(2024A1515011936);the National Natural Science Foundation of China(62320106008)
The concept of reward is fundamental in reinforcement learning with a wide range of applications in natural and social sciences.Seeking an interpretable reward for decision-making that largely shapes the system's beha...
关键词:continuous-time state and action decision law learning discrete-time reward dynamical systems reinforcement learning 
A solution method for decomposing vector fields in Hamilton energy
《Chinese Physics B》2024年第9期645-653,共9页Xin Zhao Ming Yi Zhou-Chao Wei Yuan Zhu Lu-Lu Lu 
the National Natural Science Foundation of China(Grant Nos.12305054,12172340,and 12371506)。
Hamilton energy,which reflects the energy variation of systems,is one of the crucial instruments used to analyze the characteristics of dynamical systems.Here we propose a method to deduce Hamilton energy based on the...
关键词:Hamilton energy dynamical systems vector field exterior differentiation 
A Dynamical System-Based Framework for Dimension Reduction
《Communications on Applied Mathematics and Computation》2024年第2期757-789,共33页Ryeongkyung Yoon Braxton Osting 
the NSF DMS 17-52202.
We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a...
关键词:Dimension reduction Equation discovery Dynamical systems Adjoint method Optimal transportation 
Dynamics of Plate Equations with Memory Driven by Multiplicative Noise on Bounded Domains
《Journal of Applied Mathematics and Physics》2024年第4期1492-1521,共30页Mohamed Y. A. Bakhet Abdelmajid Ali Dafallah Jing Wang Qiaozhen Ma Fadlallah Mustafa Mosa Ahmed Eshag Mohamed Paride O. Lolika Makur Mukuac Chinor 
This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback att...
关键词:Plate Equations Random Attractors Memory Term Dynamical Systems 
A multiscale differential-algebraic neural network-based method for learning dynamical systems被引量:1
《International Journal of Mechanical System Dynamics》2024年第1期77-87,共11页Yin Huang Jieyu Ding 
supported by the National Natural Science Foundations of China(Nos.12172186 and 11772166).
The objective of dynamical system learning tasks is to forecast the future behavior of a system by leveraging observed data.However,such systems can sometimes exhibit rigidity due to significant variations in componen...
关键词:dynamical systems learning multibody system dynamics differential-algebraic equation neural networks multiscale structures 
The global stability and optimal control of the COVID-19 epidemic model
《International Journal of Biomathematics》2024年第1期1-28,共28页Fengsheng Chien Hassan Saberi Nik Mohammad Shiraziant J.F.Gomez-Aguilar 
Jose Francisco Gomez Aguilar acknowledges the support provided by CONACyT:Catedras CONACyT para jovenes investigadores 2014 and SNI-CONACyT.
This paper considers stability analysis of a Susceptible-Exposed-Infected-Recovered-Virus(SEIRV)model with nonlinear incidence rates and indicates the severity and weakness of control factors for disease transmission....
关键词:Global stability SEIRV epidemic model dynamical systems Volterra-Lyapunov stability optimal control 
Data-driven discovery of linear dynamical systems from noisy data
《Science China(Technological Sciences)》2024年第1期121-129,共9页WANG YaSen YUAN Ye FANG HuaZhen DING Han 
supported by the National Natural Science Foundation of China(Grant No.92167201).
In modern science and engineering disciplines,data-driven discovery methods play a fundamental role in system modeling,as data serve as the external representations of the intrinsic mechanisms within systems.However,e...
关键词:system identification sparse Bayesian learning Kalman smoothing process and measurement noise 
检索报告 对象比较 聚类工具 使用帮助 返回顶部