granted by the China Geological Survey(Grant No.121201102000150069)
Podiform chromitites crop out in ophiolitic harzburgites as pod-like bodies associated with dunite envelopes with various thickness. It is widely accepted that the change of melt compositions caused by melt-rock react...
granted by the China Geological Survey(Grant No.121201102000150069)
The tectonic setting of podiform chromitite formation still remains highly debated. There is a close correlation between tectonic settings and oxygen fugacity(fO2)(e.g., Ballhaus, 1993;Dare et al., 2009;Parkinson and ...
supported by the National Natural Science Foundation of China (40472025, 40620120098,40872043)
We describe the new mineral species titanium, ideally Ti, found in the podiform chromitites of the Luobusha ophiolite in Tibet, People's Republic of China. The irregular crystals range from 0.1 to 0.6 mm in diameter ...
supported financially by the National Natural Science Foundation of China (Grant No. 40472025, 40620120098,40872043)
A new mineral species, named naquite(FeSi), is found in the podiform chromitites of the Luobusha ophiolite in Qusong County, Tibet, China. The detailed composition is Fe 65.65, Si 32.57 and Al 1.78 wt%. The mineral ...
supported by the National Natural Science Foundation of China(Grant 40472025,40672030 and 40872043).
Yarlongite occurs in ophiolitic chromitite at the Luobusha mine (29°5′N 92°5′E, about 200 km ESE of Lhasa), Qusum County, Shannan Prefecture, Tibet Autonomous Region, People's Republic of China. Associated mine...
supported by the National Natural Science Foundati on of China(Grant Nos.4024201 3 and 40472075)
(Fe4Cr4Ni)9C4 is a metal carbide mineral formed by combination of Fe, Cr and Ni with C. It occurs in a chromite deposit in the Luobusha ophiolite, Tibet. Based on the determina- tion of its crystal structure, the empi...
supported by the National Natural Science Foundation of China grants 4997203 and 49872019.
Diamond was found in podiform chromitites of ophiolite and harzburgite from Luobusha, Tibet. There are silicate inclusions in some diamond grains from this area. In the present work, the CCD (charge coupled detector) ...
This work was supportedby both the National Natural Science Foundation of China and the National Key Project for Basic Research on the Tibetan Plateau (Grant Nos. 49772107, 49802005 and G1998040800) ; the U.S. National Science Foundation (EAR-9805318)
We report a combined internal and whole-rock Sm-Nd isochron age, and Nd and Pb isotopic data for gabbro dikes of the Luobusha ophiolite in Tibet. The Sm-Nd isochron of data for two whole rocks and plagioclase and clin...